\left\{ \begin{array} { l } { 6 x - 18 y = - 85 } \\ { 24 x - 5 y = - 5 } \end{array} \right.
Whakaoti mō x, y
x=\frac{5}{6}\approx 0.833333333
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-18y=-85,24x-5y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x-18y=-85
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=18y-85
Me tāpiri 18y ki ngā taha e rua o te whārite.
x=\frac{1}{6}\left(18y-85\right)
Whakawehea ngā taha e rua ki te 6.
x=3y-\frac{85}{6}
Whakareatia \frac{1}{6} ki te 18y-85.
24\left(3y-\frac{85}{6}\right)-5y=-5
Whakakapia te 3y-\frac{85}{6} mō te x ki tērā atu whārite, 24x-5y=-5.
72y-340-5y=-5
Whakareatia 24 ki te 3y-\frac{85}{6}.
67y-340=-5
Tāpiri 72y ki te -5y.
67y=335
Me tāpiri 340 ki ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te 67.
x=3\times 5-\frac{85}{6}
Whakaurua te 5 mō y ki x=3y-\frac{85}{6}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=15-\frac{85}{6}
Whakareatia 3 ki te 5.
x=\frac{5}{6}
Tāpiri -\frac{85}{6} ki te 15.
x=\frac{5}{6},y=5
Kua oti te pūnaha te whakatau.
6x-18y=-85,24x-5y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-85\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right))\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right))\left(\begin{matrix}-85\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&-18\\24&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right))\left(\begin{matrix}-85\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right))\left(\begin{matrix}-85\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{6\left(-5\right)-\left(-18\times 24\right)}&-\frac{-18}{6\left(-5\right)-\left(-18\times 24\right)}\\-\frac{24}{6\left(-5\right)-\left(-18\times 24\right)}&\frac{6}{6\left(-5\right)-\left(-18\times 24\right)}\end{matrix}\right)\left(\begin{matrix}-85\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{402}&\frac{3}{67}\\-\frac{4}{67}&\frac{1}{67}\end{matrix}\right)\left(\begin{matrix}-85\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{402}\left(-85\right)+\frac{3}{67}\left(-5\right)\\-\frac{4}{67}\left(-85\right)+\frac{1}{67}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{6},y=5
Tangohia ngā huānga poukapa x me y.
6x-18y=-85,24x-5y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
24\times 6x+24\left(-18\right)y=24\left(-85\right),6\times 24x+6\left(-5\right)y=6\left(-5\right)
Kia ōrite ai a 6x me 24x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 24 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
144x-432y=-2040,144x-30y=-30
Whakarūnātia.
144x-144x-432y+30y=-2040+30
Me tango 144x-30y=-30 mai i 144x-432y=-2040 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-432y+30y=-2040+30
Tāpiri 144x ki te -144x. Ka whakakore atu ngā kupu 144x me -144x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-402y=-2040+30
Tāpiri -432y ki te 30y.
-402y=-2010
Tāpiri -2040 ki te 30.
y=5
Whakawehea ngā taha e rua ki te -402.
24x-5\times 5=-5
Whakaurua te 5 mō y ki 24x-5y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
24x-25=-5
Whakareatia -5 ki te 5.
24x=20
Me tāpiri 25 ki ngā taha e rua o te whārite.
x=\frac{5}{6}
Whakawehea ngā taha e rua ki te 24.
x=\frac{5}{6},y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}