\left\{ \begin{array} { l } { 6 x + y = - 9 } \\ { 2 x - 3 y = 7 } \end{array} \right.
Whakaoti mō x, y
x=-1
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x+y=-9,2x-3y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+y=-9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-y-9
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-y-9\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{1}{6}y-\frac{3}{2}
Whakareatia \frac{1}{6} ki te -y-9.
2\left(-\frac{1}{6}y-\frac{3}{2}\right)-3y=7
Whakakapia te -\frac{y}{6}-\frac{3}{2} mō te x ki tērā atu whārite, 2x-3y=7.
-\frac{1}{3}y-3-3y=7
Whakareatia 2 ki te -\frac{y}{6}-\frac{3}{2}.
-\frac{10}{3}y-3=7
Tāpiri -\frac{y}{3} ki te -3y.
-\frac{10}{3}y=10
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua o te whārite ki te -\frac{10}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{6}\left(-3\right)-\frac{3}{2}
Whakaurua te -3 mō y ki x=-\frac{1}{6}y-\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1-3}{2}
Whakareatia -\frac{1}{6} ki te -3.
x=-1
Tāpiri -\frac{3}{2} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=-3
Kua oti te pūnaha te whakatau.
6x+y=-9,2x-3y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&1\\2&-3\end{matrix}\right))\left(\begin{matrix}6&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\2&-3\end{matrix}\right))\left(\begin{matrix}-9\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&1\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\2&-3\end{matrix}\right))\left(\begin{matrix}-9\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\2&-3\end{matrix}\right))\left(\begin{matrix}-9\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{6\left(-3\right)-2}&-\frac{1}{6\left(-3\right)-2}\\-\frac{2}{6\left(-3\right)-2}&\frac{6}{6\left(-3\right)-2}\end{matrix}\right)\left(\begin{matrix}-9\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{20}&\frac{1}{20}\\\frac{1}{10}&-\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}-9\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{20}\left(-9\right)+\frac{1}{20}\times 7\\\frac{1}{10}\left(-9\right)-\frac{3}{10}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=-3
Tangohia ngā huānga poukapa x me y.
6x+y=-9,2x-3y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 6x+2y=2\left(-9\right),6\times 2x+6\left(-3\right)y=6\times 7
Kia ōrite ai a 6x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
12x+2y=-18,12x-18y=42
Whakarūnātia.
12x-12x+2y+18y=-18-42
Me tango 12x-18y=42 mai i 12x+2y=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+18y=-18-42
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
20y=-18-42
Tāpiri 2y ki te 18y.
20y=-60
Tāpiri -18 ki te -42.
y=-3
Whakawehea ngā taha e rua ki te 20.
2x-3\left(-3\right)=7
Whakaurua te -3 mō y ki 2x-3y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+9=7
Whakareatia -3 ki te -3.
2x=-2
Me tango 9 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 2.
x=-1,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}