\left\{ \begin{array} { l } { 6 x + 8 y = 20 } \\ { 5 y + 3 x = 8 } \end{array} \right.
Whakaoti mō x, y
x=6
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x+8y=20,3x+5y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+8y=20
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-8y+20
Me tango 8y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-8y+20\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{4}{3}y+\frac{10}{3}
Whakareatia \frac{1}{6} ki te -8y+20.
3\left(-\frac{4}{3}y+\frac{10}{3}\right)+5y=8
Whakakapia te \frac{-4y+10}{3} mō te x ki tērā atu whārite, 3x+5y=8.
-4y+10+5y=8
Whakareatia 3 ki te \frac{-4y+10}{3}.
y+10=8
Tāpiri -4y ki te 5y.
y=-2
Me tango 10 mai i ngā taha e rua o te whārite.
x=-\frac{4}{3}\left(-2\right)+\frac{10}{3}
Whakaurua te -2 mō y ki x=-\frac{4}{3}y+\frac{10}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{8+10}{3}
Whakareatia -\frac{4}{3} ki te -2.
x=6
Tāpiri \frac{10}{3} ki te \frac{8}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=6,y=-2
Kua oti te pūnaha te whakatau.
6x+8y=20,3x+5y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&8\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&8\\3&5\end{matrix}\right))\left(\begin{matrix}6&8\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&8\\3&5\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&8\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&8\\3&5\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&8\\3&5\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-8\times 3}&-\frac{8}{6\times 5-8\times 3}\\-\frac{3}{6\times 5-8\times 3}&\frac{6}{6\times 5-8\times 3}\end{matrix}\right)\left(\begin{matrix}20\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}&-\frac{4}{3}\\-\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}20\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\times 20-\frac{4}{3}\times 8\\-\frac{1}{2}\times 20+8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=-2
Tangohia ngā huānga poukapa x me y.
6x+8y=20,3x+5y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 6x+3\times 8y=3\times 20,6\times 3x+6\times 5y=6\times 8
Kia ōrite ai a 6x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
18x+24y=60,18x+30y=48
Whakarūnātia.
18x-18x+24y-30y=60-48
Me tango 18x+30y=48 mai i 18x+24y=60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
24y-30y=60-48
Tāpiri 18x ki te -18x. Ka whakakore atu ngā kupu 18x me -18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6y=60-48
Tāpiri 24y ki te -30y.
-6y=12
Tāpiri 60 ki te -48.
y=-2
Whakawehea ngā taha e rua ki te -6.
3x+5\left(-2\right)=8
Whakaurua te -2 mō y ki 3x+5y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-10=8
Whakareatia 5 ki te -2.
3x=18
Me tāpiri 10 ki ngā taha e rua o te whārite.
x=6
Whakawehea ngā taha e rua ki te 3.
x=6,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}