Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x+6y=6,6x+3y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+6y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-6y+6
Me tango 6y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-6y+6\right)
Whakawehea ngā taha e rua ki te 6.
x=-y+1
Whakareatia \frac{1}{6} ki te -6y+6.
6\left(-y+1\right)+3y=-3
Whakakapia te -y+1 mō te x ki tērā atu whārite, 6x+3y=-3.
-6y+6+3y=-3
Whakareatia 6 ki te -y+1.
-3y+6=-3
Tāpiri -6y ki te 3y.
-3y=-9
Me tango 6 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te -3.
x=-3+1
Whakaurua te 3 mō y ki x=-y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2
Tāpiri 1 ki te -3.
x=-2,y=3
Kua oti te pūnaha te whakatau.
6x+6y=6,6x+3y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&6\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&6\\6&3\end{matrix}\right))\left(\begin{matrix}6&6\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&6\\6&3\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&6\\6&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&6\\6&3\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&6\\6&3\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{6\times 3-6\times 6}&-\frac{6}{6\times 3-6\times 6}\\-\frac{6}{6\times 3-6\times 6}&\frac{6}{6\times 3-6\times 6}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 6+\frac{1}{3}\left(-3\right)\\\frac{1}{3}\times 6-\frac{1}{3}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=3
Tangohia ngā huānga poukapa x me y.
6x+6y=6,6x+3y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6x-6x+6y-3y=6+3
Me tango 6x+3y=-3 mai i 6x+6y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-3y=6+3
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=6+3
Tāpiri 6y ki te -3y.
3y=9
Tāpiri 6 ki te 3.
y=3
Whakawehea ngā taha e rua ki te 3.
6x+3\times 3=-3
Whakaurua te 3 mō y ki 6x+3y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x+9=-3
Whakareatia 3 ki te 3.
6x=-12
Me tango 9 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te 6.
x=-2,y=3
Kua oti te pūnaha te whakatau.