Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x+5y=1,x-y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+5y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-5y+1
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-5y+1\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{5}{6}y+\frac{1}{6}
Whakareatia \frac{1}{6} ki te -5y+1.
-\frac{5}{6}y+\frac{1}{6}-y=2
Whakakapia te \frac{-5y+1}{6} mō te x ki tērā atu whārite, x-y=2.
-\frac{11}{6}y+\frac{1}{6}=2
Tāpiri -\frac{5y}{6} ki te -y.
-\frac{11}{6}y=\frac{11}{6}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{6}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{6}\left(-1\right)+\frac{1}{6}
Whakaurua te -1 mō y ki x=-\frac{5}{6}y+\frac{1}{6}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5+1}{6}
Whakareatia -\frac{5}{6} ki te -1.
x=1
Tāpiri \frac{1}{6} ki te \frac{5}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-1
Kua oti te pūnaha te whakatau.
6x+5y=1,x-y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}6&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&5\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6\left(-1\right)-5}&-\frac{5}{6\left(-1\right)-5}\\-\frac{1}{6\left(-1\right)-5}&\frac{6}{6\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{5}{11}\\\frac{1}{11}&-\frac{6}{11}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}+\frac{5}{11}\times 2\\\frac{1}{11}-\frac{6}{11}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-1
Tangohia ngā huānga poukapa x me y.
6x+5y=1,x-y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6x+5y=1,6x+6\left(-1\right)y=6\times 2
Kia ōrite ai a 6x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
6x+5y=1,6x-6y=12
Whakarūnātia.
6x-6x+5y+6y=1-12
Me tango 6x-6y=12 mai i 6x+5y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y+6y=1-12
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=1-12
Tāpiri 5y ki te 6y.
11y=-11
Tāpiri 1 ki te -12.
y=-1
Whakawehea ngā taha e rua ki te 11.
x-\left(-1\right)=2
Whakaurua te -1 mō y ki x-y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Me tango 1 mai i ngā taha e rua o te whārite.
x=1,y=-1
Kua oti te pūnaha te whakatau.