Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x+2y=300,3x+5y=600
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+2y=300
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-2y+300
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-2y+300\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{1}{3}y+50
Whakareatia \frac{1}{6} ki te -2y+300.
3\left(-\frac{1}{3}y+50\right)+5y=600
Whakakapia te -\frac{y}{3}+50 mō te x ki tērā atu whārite, 3x+5y=600.
-y+150+5y=600
Whakareatia 3 ki te -\frac{y}{3}+50.
4y+150=600
Tāpiri -y ki te 5y.
4y=450
Me tango 150 mai i ngā taha e rua o te whārite.
y=\frac{225}{2}
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{3}\times \frac{225}{2}+50
Whakaurua te \frac{225}{2} mō y ki x=-\frac{1}{3}y+50. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{75}{2}+50
Whakareatia -\frac{1}{3} ki te \frac{225}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{25}{2}
Tāpiri 50 ki te -\frac{75}{2}.
x=\frac{25}{2},y=\frac{225}{2}
Kua oti te pūnaha te whakatau.
6x+2y=300,3x+5y=600
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\600\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}6&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}300\\600\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&2\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}300\\600\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}300\\600\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-2\times 3}&-\frac{2}{6\times 5-2\times 3}\\-\frac{3}{6\times 5-2\times 3}&\frac{6}{6\times 5-2\times 3}\end{matrix}\right)\left(\begin{matrix}300\\600\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}&-\frac{1}{12}\\-\frac{1}{8}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}300\\600\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}\times 300-\frac{1}{12}\times 600\\-\frac{1}{8}\times 300+\frac{1}{4}\times 600\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{2}\\\frac{225}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{25}{2},y=\frac{225}{2}
Tangohia ngā huānga poukapa x me y.
6x+2y=300,3x+5y=600
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 6x+3\times 2y=3\times 300,6\times 3x+6\times 5y=6\times 600
Kia ōrite ai a 6x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
18x+6y=900,18x+30y=3600
Whakarūnātia.
18x-18x+6y-30y=900-3600
Me tango 18x+30y=3600 mai i 18x+6y=900 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-30y=900-3600
Tāpiri 18x ki te -18x. Ka whakakore atu ngā kupu 18x me -18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-24y=900-3600
Tāpiri 6y ki te -30y.
-24y=-2700
Tāpiri 900 ki te -3600.
y=\frac{225}{2}
Whakawehea ngā taha e rua ki te -24.
3x+5\times \frac{225}{2}=600
Whakaurua te \frac{225}{2} mō y ki 3x+5y=600. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+\frac{1125}{2}=600
Whakareatia 5 ki te \frac{225}{2}.
3x=\frac{75}{2}
Me tango \frac{1125}{2} mai i ngā taha e rua o te whārite.
x=\frac{25}{2}
Whakawehea ngā taha e rua ki te 3.
x=\frac{25}{2},y=\frac{225}{2}
Kua oti te pūnaha te whakatau.