Tīpoka ki ngā ihirangi matua
Whakaoti mō u, v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6u+4v=5,9u-8v=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6u+4v=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te u mā te wehe i te u i te taha mauī o te tohu ōrite.
6u=-4v+5
Me tango 4v mai i ngā taha e rua o te whārite.
u=\frac{1}{6}\left(-4v+5\right)
Whakawehea ngā taha e rua ki te 6.
u=-\frac{2}{3}v+\frac{5}{6}
Whakareatia \frac{1}{6} ki te -4v+5.
9\left(-\frac{2}{3}v+\frac{5}{6}\right)-8v=4
Whakakapia te -\frac{2v}{3}+\frac{5}{6} mō te u ki tērā atu whārite, 9u-8v=4.
-6v+\frac{15}{2}-8v=4
Whakareatia 9 ki te -\frac{2v}{3}+\frac{5}{6}.
-14v+\frac{15}{2}=4
Tāpiri -6v ki te -8v.
-14v=-\frac{7}{2}
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.
v=\frac{1}{4}
Whakawehea ngā taha e rua ki te -14.
u=-\frac{2}{3}\times \frac{1}{4}+\frac{5}{6}
Whakaurua te \frac{1}{4} mō v ki u=-\frac{2}{3}v+\frac{5}{6}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō u hāngai tonu.
u=\frac{-1+5}{6}
Whakareatia -\frac{2}{3} ki te \frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
u=\frac{2}{3}
Tāpiri \frac{5}{6} ki te -\frac{1}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
u=\frac{2}{3},v=\frac{1}{4}
Kua oti te pūnaha te whakatau.
6u+4v=5,9u-8v=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&4\\9&-8\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}5\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&4\\9&-8\end{matrix}\right))\left(\begin{matrix}6&4\\9&-8\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\9&-8\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&4\\9&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\9&-8\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\9&-8\end{matrix}\right))\left(\begin{matrix}5\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{6\left(-8\right)-4\times 9}&-\frac{4}{6\left(-8\right)-4\times 9}\\-\frac{9}{6\left(-8\right)-4\times 9}&\frac{6}{6\left(-8\right)-4\times 9}\end{matrix}\right)\left(\begin{matrix}5\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}\frac{2}{21}&\frac{1}{21}\\\frac{3}{28}&-\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}5\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}\frac{2}{21}\times 5+\frac{1}{21}\times 4\\\frac{3}{28}\times 5-\frac{1}{14}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\\\frac{1}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
u=\frac{2}{3},v=\frac{1}{4}
Tangohia ngā huānga poukapa u me v.
6u+4v=5,9u-8v=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9\times 6u+9\times 4v=9\times 5,6\times 9u+6\left(-8\right)v=6\times 4
Kia ōrite ai a 6u me 9u, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
54u+36v=45,54u-48v=24
Whakarūnātia.
54u-54u+36v+48v=45-24
Me tango 54u-48v=24 mai i 54u+36v=45 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
36v+48v=45-24
Tāpiri 54u ki te -54u. Ka whakakore atu ngā kupu 54u me -54u, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
84v=45-24
Tāpiri 36v ki te 48v.
84v=21
Tāpiri 45 ki te -24.
v=\frac{1}{4}
Whakawehea ngā taha e rua ki te 84.
9u-8\times \frac{1}{4}=4
Whakaurua te \frac{1}{4} mō v ki 9u-8v=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō u hāngai tonu.
9u-2=4
Whakareatia -8 ki te \frac{1}{4}.
9u=6
Me tāpiri 2 ki ngā taha e rua o te whārite.
u=\frac{2}{3}
Whakawehea ngā taha e rua ki te 9.
u=\frac{2}{3},v=\frac{1}{4}
Kua oti te pūnaha te whakatau.