\left\{ \begin{array} { l } { 6 + 2 a + b = 0 } \\ { 24 - 4 a + b = 0 } \end{array} \right.
Whakaoti mō a, b
a=3
b=-12
Tohaina
Kua tāruatia ki te papatopenga
2a+b+6=0,-4a+b+24=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2a+b+6=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
2a+b=-6
Me tango 6 mai i ngā taha e rua o te whārite.
2a=-b-6
Me tango b mai i ngā taha e rua o te whārite.
a=\frac{1}{2}\left(-b-6\right)
Whakawehea ngā taha e rua ki te 2.
a=-\frac{1}{2}b-3
Whakareatia \frac{1}{2} ki te -b-6.
-4\left(-\frac{1}{2}b-3\right)+b+24=0
Whakakapia te -\frac{b}{2}-3 mō te a ki tērā atu whārite, -4a+b+24=0.
2b+12+b+24=0
Whakareatia -4 ki te -\frac{b}{2}-3.
3b+12+24=0
Tāpiri 2b ki te b.
3b+36=0
Tāpiri 12 ki te 24.
3b=-36
Me tango 36 mai i ngā taha e rua o te whārite.
b=-12
Whakawehea ngā taha e rua ki te 3.
a=-\frac{1}{2}\left(-12\right)-3
Whakaurua te -12 mō b ki a=-\frac{1}{2}b-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=6-3
Whakareatia -\frac{1}{2} ki te -12.
a=3
Tāpiri -3 ki te 6.
a=3,b=-12
Kua oti te pūnaha te whakatau.
2a+b+6=0,-4a+b+24=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\-4&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-6\\-24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\-4&1\end{matrix}\right))\left(\begin{matrix}2&1\\-4&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&1\end{matrix}\right))\left(\begin{matrix}-6\\-24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\-4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&1\end{matrix}\right))\left(\begin{matrix}-6\\-24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&1\end{matrix}\right))\left(\begin{matrix}-6\\-24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-4\right)}&-\frac{1}{2-\left(-4\right)}\\-\frac{-4}{2-\left(-4\right)}&\frac{2}{2-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{6}\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-6\\-24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\left(-6\right)-\frac{1}{6}\left(-24\right)\\\frac{2}{3}\left(-6\right)+\frac{1}{3}\left(-24\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\-12\end{matrix}\right)
Mahia ngā tātaitanga.
a=3,b=-12
Tangohia ngā huānga poukapa a me b.
2a+b+6=0,-4a+b+24=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2a+4a+b-b+6-24=0
Me tango -4a+b+24=0 mai i 2a+b+6=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2a+4a+6-24=0
Tāpiri b ki te -b. Ka whakakore atu ngā kupu b me -b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6a+6-24=0
Tāpiri 2a ki te 4a.
6a-18=0
Tāpiri 6 ki te -24.
6a=18
Me tāpiri 18 ki ngā taha e rua o te whārite.
a=3
Whakawehea ngā taha e rua ki te 6.
-4\times 3+b+24=0
Whakaurua te 3 mō a ki -4a+b+24=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
-12+b+24=0
Whakareatia -4 ki te 3.
b+12=0
Tāpiri -12 ki te 24.
b=-12
Me tango 12 mai i ngā taha e rua o te whārite.
a=3,b=-12
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}