\left\{ \begin{array} { l } { 50 x + y = 200 } \\ { 60 x + y = 260 } \end{array} \right.
Whakaoti mō x, y
x=6
y=-100
Graph
Tohaina
Kua tāruatia ki te papatopenga
50x+y=200,60x+y=260
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
50x+y=200
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
50x=-y+200
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{50}\left(-y+200\right)
Whakawehea ngā taha e rua ki te 50.
x=-\frac{1}{50}y+4
Whakareatia \frac{1}{50} ki te -y+200.
60\left(-\frac{1}{50}y+4\right)+y=260
Whakakapia te -\frac{y}{50}+4 mō te x ki tērā atu whārite, 60x+y=260.
-\frac{6}{5}y+240+y=260
Whakareatia 60 ki te -\frac{y}{50}+4.
-\frac{1}{5}y+240=260
Tāpiri -\frac{6y}{5} ki te y.
-\frac{1}{5}y=20
Me tango 240 mai i ngā taha e rua o te whārite.
y=-100
Me whakarea ngā taha e rua ki te -5.
x=-\frac{1}{50}\left(-100\right)+4
Whakaurua te -100 mō y ki x=-\frac{1}{50}y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2+4
Whakareatia -\frac{1}{50} ki te -100.
x=6
Tāpiri 4 ki te 2.
x=6,y=-100
Kua oti te pūnaha te whakatau.
50x+y=200,60x+y=260
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}50&1\\60&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\260\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}50&1\\60&1\end{matrix}\right))\left(\begin{matrix}50&1\\60&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}50&1\\60&1\end{matrix}\right))\left(\begin{matrix}200\\260\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}50&1\\60&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}50&1\\60&1\end{matrix}\right))\left(\begin{matrix}200\\260\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}50&1\\60&1\end{matrix}\right))\left(\begin{matrix}200\\260\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{50-60}&-\frac{1}{50-60}\\-\frac{60}{50-60}&\frac{50}{50-60}\end{matrix}\right)\left(\begin{matrix}200\\260\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{1}{10}\\6&-5\end{matrix}\right)\left(\begin{matrix}200\\260\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 200+\frac{1}{10}\times 260\\6\times 200-5\times 260\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-100\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=-100
Tangohia ngā huānga poukapa x me y.
50x+y=200,60x+y=260
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
50x-60x+y-y=200-260
Me tango 60x+y=260 mai i 50x+y=200 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
50x-60x=200-260
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-10x=200-260
Tāpiri 50x ki te -60x.
-10x=-60
Tāpiri 200 ki te -260.
x=6
Whakawehea ngā taha e rua ki te -10.
60\times 6+y=260
Whakaurua te 6 mō x ki 60x+y=260. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
360+y=260
Whakareatia 60 ki te 6.
y=-100
Me tango 360 mai i ngā taha e rua o te whārite.
x=6,y=-100
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}