Tīpoka ki ngā ihirangi matua
Whakaoti mō y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5y-4z=-1,-7y+7z=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5y-4z=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
5y=4z-1
Me tāpiri 4z ki ngā taha e rua o te whārite.
y=\frac{1}{5}\left(4z-1\right)
Whakawehea ngā taha e rua ki te 5.
y=\frac{4}{5}z-\frac{1}{5}
Whakareatia \frac{1}{5} ki te 4z-1.
-7\left(\frac{4}{5}z-\frac{1}{5}\right)+7z=9
Whakakapia te \frac{4z-1}{5} mō te y ki tērā atu whārite, -7y+7z=9.
-\frac{28}{5}z+\frac{7}{5}+7z=9
Whakareatia -7 ki te \frac{4z-1}{5}.
\frac{7}{5}z+\frac{7}{5}=9
Tāpiri -\frac{28z}{5} ki te 7z.
\frac{7}{5}z=\frac{38}{5}
Me tango \frac{7}{5} mai i ngā taha e rua o te whārite.
z=\frac{38}{7}
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{4}{5}\times \frac{38}{7}-\frac{1}{5}
Whakaurua te \frac{38}{7} mō z ki y=\frac{4}{5}z-\frac{1}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{152}{35}-\frac{1}{5}
Whakareatia \frac{4}{5} ki te \frac{38}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{29}{7}
Tāpiri -\frac{1}{5} ki te \frac{152}{35} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{29}{7},z=\frac{38}{7}
Kua oti te pūnaha te whakatau.
5y-4z=-1,-7y+7z=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-4\\-7&7\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}-1\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-4\\-7&7\end{matrix}\right))\left(\begin{matrix}5&-4\\-7&7\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-7&7\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-4\\-7&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-7&7\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-7&7\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-4\left(-7\right)\right)}&-\frac{-4}{5\times 7-\left(-4\left(-7\right)\right)}\\-\frac{-7}{5\times 7-\left(-4\left(-7\right)\right)}&\frac{5}{5\times 7-\left(-4\left(-7\right)\right)}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}1&\frac{4}{7}\\1&\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}-1+\frac{4}{7}\times 9\\-1+\frac{5}{7}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}\frac{29}{7}\\\frac{38}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{29}{7},z=\frac{38}{7}
Tangohia ngā huānga poukapa y me z.
5y-4z=-1,-7y+7z=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-7\times 5y-7\left(-4\right)z=-7\left(-1\right),5\left(-7\right)y+5\times 7z=5\times 9
Kia ōrite ai a 5y me -7y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-35y+28z=7,-35y+35z=45
Whakarūnātia.
-35y+35y+28z-35z=7-45
Me tango -35y+35z=45 mai i -35y+28z=7 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
28z-35z=7-45
Tāpiri -35y ki te 35y. Ka whakakore atu ngā kupu -35y me 35y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7z=7-45
Tāpiri 28z ki te -35z.
-7z=-38
Tāpiri 7 ki te -45.
z=\frac{38}{7}
Whakawehea ngā taha e rua ki te -7.
-7y+7\times \frac{38}{7}=9
Whakaurua te \frac{38}{7} mō z ki -7y+7z=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-7y+38=9
Whakareatia 7 ki te \frac{38}{7}.
-7y=-29
Me tango 38 mai i ngā taha e rua o te whārite.
y=\frac{29}{7}
Whakawehea ngā taha e rua ki te -7.
y=\frac{29}{7},z=\frac{38}{7}
Kua oti te pūnaha te whakatau.