\left\{ \begin{array} { l } { 5 y = 10 x } \\ { x ^ { 2 } + y ^ { 2 } = 36 } \end{array} \right.
Whakaoti mō y, x
x=-\frac{6\sqrt{5}}{5}\approx -2.683281573\text{, }y=-\frac{12\sqrt{5}}{5}\approx -5.366563146
x=\frac{6\sqrt{5}}{5}\approx 2.683281573\text{, }y=\frac{12\sqrt{5}}{5}\approx 5.366563146
Graph
Tohaina
Kua tāruatia ki te papatopenga
5y-10x=0
Whakaarohia te whārite tuatahi. Tangohia te 10x mai i ngā taha e rua.
5y-10x=0,x^{2}+y^{2}=36
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5y-10x=0
Whakaotia te 5y-10x=0 mō y mā te wehe i te y i te taha mauī o te tohu ōrite.
5y=10x
Me tango -10x mai i ngā taha e rua o te whārite.
y=2x
Whakawehea ngā taha e rua ki te 5.
x^{2}+\left(2x\right)^{2}=36
Whakakapia te 2x mō te y ki tērā atu whārite, x^{2}+y^{2}=36.
x^{2}+4x^{2}=36
Pūrua 2x.
5x^{2}=36
Tāpiri x^{2} ki te 4x^{2}.
5x^{2}-36=0
Me tango 36 mai i ngā taha e rua o te whārite.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-36\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\times 2^{2} mō a, 1\times 0\times 2\times 2 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-36\right)}}{2\times 5}
Pūrua 1\times 0\times 2\times 2.
x=\frac{0±\sqrt{-20\left(-36\right)}}{2\times 5}
Whakareatia -4 ki te 1+1\times 2^{2}.
x=\frac{0±\sqrt{720}}{2\times 5}
Whakareatia -20 ki te -36.
x=\frac{0±12\sqrt{5}}{2\times 5}
Tuhia te pūtakerua o te 720.
x=\frac{0±12\sqrt{5}}{10}
Whakareatia 2 ki te 1+1\times 2^{2}.
x=\frac{6\sqrt{5}}{5}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{5}}{10} ina he tāpiri te ±.
x=-\frac{6\sqrt{5}}{5}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{5}}{10} ina he tango te ±.
y=2\times \frac{6\sqrt{5}}{5}
E rua ngā otinga mō x: \frac{6\sqrt{5}}{5} me -\frac{6\sqrt{5}}{5}. Me whakakapi \frac{6\sqrt{5}}{5} mō x ki te whārite y=2x hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=2\left(-\frac{6\sqrt{5}}{5}\right)
Me whakakapi te -\frac{6\sqrt{5}}{5} ināianei mō te x ki te whārite y=2x ka whakaoti hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=2\times \frac{6\sqrt{5}}{5},x=\frac{6\sqrt{5}}{5}\text{ or }y=2\left(-\frac{6\sqrt{5}}{5}\right),x=-\frac{6\sqrt{5}}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}