\left\{ \begin{array} { l } { 5 y + 2 x = 5 } \\ { y + 2 x = 5 } \end{array} \right.
Whakaoti mō y, x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
5y+2x=5,y+2x=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5y+2x=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
5y=-2x+5
Me tango 2x mai i ngā taha e rua o te whārite.
y=\frac{1}{5}\left(-2x+5\right)
Whakawehea ngā taha e rua ki te 5.
y=-\frac{2}{5}x+1
Whakareatia \frac{1}{5} ki te -2x+5.
-\frac{2}{5}x+1+2x=5
Whakakapia te -\frac{2x}{5}+1 mō te y ki tērā atu whārite, y+2x=5.
\frac{8}{5}x+1=5
Tāpiri -\frac{2x}{5} ki te 2x.
\frac{8}{5}x=4
Me tango 1 mai i ngā taha e rua o te whārite.
x=\frac{5}{2}
Whakawehea ngā taha e rua o te whārite ki te \frac{8}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-\frac{2}{5}\times \frac{5}{2}+1
Whakaurua te \frac{5}{2} mō x ki y=-\frac{2}{5}x+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-1+1
Whakareatia -\frac{2}{5} ki te \frac{5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=0
Tāpiri 1 ki te -1.
y=0,x=\frac{5}{2}
Kua oti te pūnaha te whakatau.
5y+2x=5,y+2x=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&2\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5&2\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&2\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-2}&-\frac{2}{5\times 2-2}\\-\frac{1}{5\times 2-2}&\frac{5}{5\times 2-2}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\-\frac{1}{8}&\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5-\frac{1}{4}\times 5\\-\frac{1}{8}\times 5+\frac{5}{8}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\\frac{5}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
y=0,x=\frac{5}{2}
Tangohia ngā huānga poukapa y me x.
5y+2x=5,y+2x=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5y-y+2x-2x=5-5
Me tango y+2x=5 mai i 5y+2x=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y-y=5-5
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4y=5-5
Tāpiri 5y ki te -y.
4y=0
Tāpiri 5 ki te -5.
y=0
Whakawehea ngā taha e rua ki te 4.
2x=5
Whakaurua te 0 mō y ki y+2x=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
y=0,x=\frac{5}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}