\left\{ \begin{array} { l } { 5 x - y = 5 } \\ { y = \frac { 1 } { 5 } x } \end{array} \right.
Whakaoti mō x, y
x = \frac{25}{24} = 1\frac{1}{24} \approx 1.041666667
y=\frac{5}{24}\approx 0.208333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-\frac{1}{5}x=0
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{5}x mai i ngā taha e rua.
5x-y=5,-\frac{1}{5}x+y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=y+5
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(y+5\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{1}{5}y+1
Whakareatia \frac{1}{5} ki te y+5.
-\frac{1}{5}\left(\frac{1}{5}y+1\right)+y=0
Whakakapia te \frac{y}{5}+1 mō te x ki tērā atu whārite, -\frac{1}{5}x+y=0.
-\frac{1}{25}y-\frac{1}{5}+y=0
Whakareatia -\frac{1}{5} ki te \frac{y}{5}+1.
\frac{24}{25}y-\frac{1}{5}=0
Tāpiri -\frac{y}{25} ki te y.
\frac{24}{25}y=\frac{1}{5}
Me tāpiri \frac{1}{5} ki ngā taha e rua o te whārite.
y=\frac{5}{24}
Whakawehea ngā taha e rua o te whārite ki te \frac{24}{25}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{5}\times \frac{5}{24}+1
Whakaurua te \frac{5}{24} mō y ki x=\frac{1}{5}y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1}{24}+1
Whakareatia \frac{1}{5} ki te \frac{5}{24} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{25}{24}
Tāpiri 1 ki te \frac{1}{24}.
x=\frac{25}{24},y=\frac{5}{24}
Kua oti te pūnaha te whakatau.
y-\frac{1}{5}x=0
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{5}x mai i ngā taha e rua.
5x-y=5,-\frac{1}{5}x+y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right))\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-\left(-\left(-\frac{1}{5}\right)\right)}&-\frac{-1}{5-\left(-\left(-\frac{1}{5}\right)\right)}\\-\frac{-\frac{1}{5}}{5-\left(-\left(-\frac{1}{5}\right)\right)}&\frac{5}{5-\left(-\left(-\frac{1}{5}\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}&\frac{5}{24}\\\frac{1}{24}&\frac{25}{24}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}\times 5\\\frac{1}{24}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{24}\\\frac{5}{24}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{25}{24},y=\frac{5}{24}
Tangohia ngā huānga poukapa x me y.
y-\frac{1}{5}x=0
Whakaarohia te whārite tuarua. Tangohia te \frac{1}{5}x mai i ngā taha e rua.
5x-y=5,-\frac{1}{5}x+y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-\frac{1}{5}\times 5x-\frac{1}{5}\left(-1\right)y=-\frac{1}{5}\times 5,5\left(-\frac{1}{5}\right)x+5y=0
Kia ōrite ai a 5x me -\frac{x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -\frac{1}{5} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-x+\frac{1}{5}y=-1,-x+5y=0
Whakarūnātia.
-x+x+\frac{1}{5}y-5y=-1
Me tango -x+5y=0 mai i -x+\frac{1}{5}y=-1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{1}{5}y-5y=-1
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{24}{5}y=-1
Tāpiri \frac{y}{5} ki te -5y.
y=\frac{5}{24}
Whakawehea ngā taha e rua o te whārite ki te -\frac{24}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-\frac{1}{5}x+\frac{5}{24}=0
Whakaurua te \frac{5}{24} mō y ki -\frac{1}{5}x+y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-\frac{1}{5}x=-\frac{5}{24}
Me tango \frac{5}{24} mai i ngā taha e rua o te whārite.
x=\frac{25}{24}
Me whakarea ngā taha e rua ki te -5.
x=\frac{25}{24},y=\frac{5}{24}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}