\left\{ \begin{array} { l } { 5 x - y = 110 } \\ { 9 y - x = 110 } \end{array} \right.
Whakaoti mō x, y
x=25
y=15
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-y=110,-x+9y=110
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-y=110
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=y+110
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(y+110\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{1}{5}y+22
Whakareatia \frac{1}{5} ki te y+110.
-\left(\frac{1}{5}y+22\right)+9y=110
Whakakapia te \frac{y}{5}+22 mō te x ki tērā atu whārite, -x+9y=110.
-\frac{1}{5}y-22+9y=110
Whakareatia -1 ki te \frac{y}{5}+22.
\frac{44}{5}y-22=110
Tāpiri -\frac{y}{5} ki te 9y.
\frac{44}{5}y=132
Me tāpiri 22 ki ngā taha e rua o te whārite.
y=15
Whakawehea ngā taha e rua o te whārite ki te \frac{44}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{5}\times 15+22
Whakaurua te 15 mō y ki x=\frac{1}{5}y+22. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3+22
Whakareatia \frac{1}{5} ki te 15.
x=25
Tāpiri 22 ki te 3.
x=25,y=15
Kua oti te pūnaha te whakatau.
5x-y=110,-x+9y=110
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}110\\110\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}110\\110\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-1\\-1&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}110\\110\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}110\\110\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5\times 9-\left(-\left(-1\right)\right)}&-\frac{-1}{5\times 9-\left(-\left(-1\right)\right)}\\-\frac{-1}{5\times 9-\left(-\left(-1\right)\right)}&\frac{5}{5\times 9-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}110\\110\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{44}&\frac{1}{44}\\\frac{1}{44}&\frac{5}{44}\end{matrix}\right)\left(\begin{matrix}110\\110\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{44}\times 110+\frac{1}{44}\times 110\\\frac{1}{44}\times 110+\frac{5}{44}\times 110\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\15\end{matrix}\right)
Mahia ngā tātaitanga.
x=25,y=15
Tangohia ngā huānga poukapa x me y.
5x-y=110,-x+9y=110
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5x-\left(-y\right)=-110,5\left(-1\right)x+5\times 9y=5\times 110
Kia ōrite ai a 5x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-5x+y=-110,-5x+45y=550
Whakarūnātia.
-5x+5x+y-45y=-110-550
Me tango -5x+45y=550 mai i -5x+y=-110 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-45y=-110-550
Tāpiri -5x ki te 5x. Ka whakakore atu ngā kupu -5x me 5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-44y=-110-550
Tāpiri y ki te -45y.
-44y=-660
Tāpiri -110 ki te -550.
y=15
Whakawehea ngā taha e rua ki te -44.
-x+9\times 15=110
Whakaurua te 15 mō y ki -x+9y=110. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x+135=110
Whakareatia 9 ki te 15.
-x=-25
Me tango 135 mai i ngā taha e rua o te whārite.
x=25
Whakawehea ngā taha e rua ki te -1.
x=25,y=15
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}