\left\{ \begin{array} { l } { 5 x - 6 y = - 3 } \\ { 5 x - 3 y = 3 } \end{array} \right.
Whakaoti mō x, y
x = \frac{9}{5} = 1\frac{4}{5} = 1.8
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-6y=-3,5x-3y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-6y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=6y-3
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(6y-3\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{6}{5}y-\frac{3}{5}
Whakareatia \frac{1}{5} ki te 6y-3.
5\left(\frac{6}{5}y-\frac{3}{5}\right)-3y=3
Whakakapia te \frac{6y-3}{5} mō te x ki tērā atu whārite, 5x-3y=3.
6y-3-3y=3
Whakareatia 5 ki te \frac{6y-3}{5}.
3y-3=3
Tāpiri 6y ki te -3y.
3y=6
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te 3.
x=\frac{6}{5}\times 2-\frac{3}{5}
Whakaurua te 2 mō y ki x=\frac{6}{5}y-\frac{3}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{12-3}{5}
Whakareatia \frac{6}{5} ki te 2.
x=\frac{9}{5}
Tāpiri -\frac{3}{5} ki te \frac{12}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{9}{5},y=2
Kua oti te pūnaha te whakatau.
5x-6y=-3,5x-3y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-6\\5&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-\left(-6\times 5\right)}&-\frac{-6}{5\left(-3\right)-\left(-6\times 5\right)}\\-\frac{5}{5\left(-3\right)-\left(-6\times 5\right)}&\frac{5}{5\left(-3\right)-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\left(-3\right)+\frac{2}{5}\times 3\\-\frac{1}{3}\left(-3\right)+\frac{1}{3}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5}\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{9}{5},y=2
Tangohia ngā huānga poukapa x me y.
5x-6y=-3,5x-3y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x-5x-6y+3y=-3-3
Me tango 5x-3y=3 mai i 5x-6y=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y+3y=-3-3
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=-3-3
Tāpiri -6y ki te 3y.
-3y=-6
Tāpiri -3 ki te -3.
y=2
Whakawehea ngā taha e rua ki te -3.
5x-3\times 2=3
Whakaurua te 2 mō y ki 5x-3y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-6=3
Whakareatia -3 ki te 2.
5x=9
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=\frac{9}{5}
Whakawehea ngā taha e rua ki te 5.
x=\frac{9}{5},y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}