\left\{ \begin{array} { l } { 5 x - 4 y = 19 y } \\ { 5 x + 2 y = 71 } \end{array} \right.
Whakaoti mō x, y
x = \frac{1633}{125} = 13\frac{8}{125} = 13.064
y = \frac{71}{25} = 2\frac{21}{25} = 2.84
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-4y-19y=0
Whakaarohia te whārite tuatahi. Tangohia te 19y mai i ngā taha e rua.
5x-23y=0
Pahekotia te -4y me -19y, ka -23y.
5x-23y=0,5x+2y=71
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-23y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=23y
Me tāpiri 23y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\times 23y
Whakawehea ngā taha e rua ki te 5.
x=\frac{23}{5}y
Whakareatia \frac{1}{5} ki te 23y.
5\times \frac{23}{5}y+2y=71
Whakakapia te \frac{23y}{5} mō te x ki tērā atu whārite, 5x+2y=71.
23y+2y=71
Whakareatia 5 ki te \frac{23y}{5}.
25y=71
Tāpiri 23y ki te 2y.
y=\frac{71}{25}
Whakawehea ngā taha e rua ki te 25.
x=\frac{23}{5}\times \frac{71}{25}
Whakaurua te \frac{71}{25} mō y ki x=\frac{23}{5}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1633}{125}
Whakareatia \frac{23}{5} ki te \frac{71}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1633}{125},y=\frac{71}{25}
Kua oti te pūnaha te whakatau.
5x-4y-19y=0
Whakaarohia te whārite tuatahi. Tangohia te 19y mai i ngā taha e rua.
5x-23y=0
Pahekotia te -4y me -19y, ka -23y.
5x-23y=0,5x+2y=71
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-23\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\71\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-23\\5&2\end{matrix}\right))\left(\begin{matrix}5&-23\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-23\\5&2\end{matrix}\right))\left(\begin{matrix}0\\71\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-23\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-23\\5&2\end{matrix}\right))\left(\begin{matrix}0\\71\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-23\\5&2\end{matrix}\right))\left(\begin{matrix}0\\71\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-23\times 5\right)}&-\frac{-23}{5\times 2-\left(-23\times 5\right)}\\-\frac{5}{5\times 2-\left(-23\times 5\right)}&\frac{5}{5\times 2-\left(-23\times 5\right)}\end{matrix}\right)\left(\begin{matrix}0\\71\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{125}&\frac{23}{125}\\-\frac{1}{25}&\frac{1}{25}\end{matrix}\right)\left(\begin{matrix}0\\71\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{125}\times 71\\\frac{1}{25}\times 71\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1633}{125}\\\frac{71}{25}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1633}{125},y=\frac{71}{25}
Tangohia ngā huānga poukapa x me y.
5x-4y-19y=0
Whakaarohia te whārite tuatahi. Tangohia te 19y mai i ngā taha e rua.
5x-23y=0
Pahekotia te -4y me -19y, ka -23y.
5x-23y=0,5x+2y=71
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x-5x-23y-2y=-71
Me tango 5x+2y=71 mai i 5x-23y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-23y-2y=-71
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-25y=-71
Tāpiri -23y ki te -2y.
y=\frac{71}{25}
Whakawehea ngā taha e rua ki te -25.
5x+2\times \frac{71}{25}=71
Whakaurua te \frac{71}{25} mō y ki 5x+2y=71. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x+\frac{142}{25}=71
Whakareatia 2 ki te \frac{71}{25}.
5x=\frac{1633}{25}
Me tango \frac{142}{25} mai i ngā taha e rua o te whārite.
x=\frac{1633}{125}
Whakawehea ngā taha e rua ki te 5.
x=\frac{1633}{125},y=\frac{71}{25}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}