Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x-4y=-3,3x-4y=-13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-4y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=4y-3
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(4y-3\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{4}{5}y-\frac{3}{5}
Whakareatia \frac{1}{5} ki te 4y-3.
3\left(\frac{4}{5}y-\frac{3}{5}\right)-4y=-13
Whakakapia te \frac{4y-3}{5} mō te x ki tērā atu whārite, 3x-4y=-13.
\frac{12}{5}y-\frac{9}{5}-4y=-13
Whakareatia 3 ki te \frac{4y-3}{5}.
-\frac{8}{5}y-\frac{9}{5}=-13
Tāpiri \frac{12y}{5} ki te -4y.
-\frac{8}{5}y=-\frac{56}{5}
Me tāpiri \frac{9}{5} ki ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua o te whārite ki te -\frac{8}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{4}{5}\times 7-\frac{3}{5}
Whakaurua te 7 mō y ki x=\frac{4}{5}y-\frac{3}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{28-3}{5}
Whakareatia \frac{4}{5} ki te 7.
x=5
Tāpiri -\frac{3}{5} ki te \frac{28}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5,y=7
Kua oti te pūnaha te whakatau.
5x-4y=-3,3x-4y=-13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-4\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-4\\3&-4\end{matrix}\right))\left(\begin{matrix}5&-4\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&-4\end{matrix}\right))\left(\begin{matrix}-3\\-13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-4\\3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&-4\end{matrix}\right))\left(\begin{matrix}-3\\-13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\3&-4\end{matrix}\right))\left(\begin{matrix}-3\\-13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5\left(-4\right)-\left(-4\times 3\right)}&-\frac{-4}{5\left(-4\right)-\left(-4\times 3\right)}\\-\frac{3}{5\left(-4\right)-\left(-4\times 3\right)}&\frac{5}{5\left(-4\right)-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{3}{8}&-\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}-3\\-13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-3\right)-\frac{1}{2}\left(-13\right)\\\frac{3}{8}\left(-3\right)-\frac{5}{8}\left(-13\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=7
Tangohia ngā huānga poukapa x me y.
5x-4y=-3,3x-4y=-13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x-3x-4y+4y=-3+13
Me tango 3x-4y=-13 mai i 5x-4y=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5x-3x=-3+13
Tāpiri -4y ki te 4y. Ka whakakore atu ngā kupu -4y me 4y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=-3+13
Tāpiri 5x ki te -3x.
2x=10
Tāpiri -3 ki te 13.
x=5
Whakawehea ngā taha e rua ki te 2.
3\times 5-4y=-13
Whakaurua te 5 mō x ki 3x-4y=-13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
15-4y=-13
Whakareatia 3 ki te 5.
-4y=-28
Me tango 15 mai i ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua ki te -4.
x=5,y=7
Kua oti te pūnaha te whakatau.