\left\{ \begin{array} { l } { 5 x - 3 y = 28 } \\ { 12 x + 4 y = 0 } \end{array} \right.
Whakaoti mō x, y
x=2
y=-6
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-3y=28,12x+4y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-3y=28
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=3y+28
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(3y+28\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{3}{5}y+\frac{28}{5}
Whakareatia \frac{1}{5} ki te 3y+28.
12\left(\frac{3}{5}y+\frac{28}{5}\right)+4y=0
Whakakapia te \frac{3y+28}{5} mō te x ki tērā atu whārite, 12x+4y=0.
\frac{36}{5}y+\frac{336}{5}+4y=0
Whakareatia 12 ki te \frac{3y+28}{5}.
\frac{56}{5}y+\frac{336}{5}=0
Tāpiri \frac{36y}{5} ki te 4y.
\frac{56}{5}y=-\frac{336}{5}
Me tango \frac{336}{5} mai i ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua o te whārite ki te \frac{56}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{5}\left(-6\right)+\frac{28}{5}
Whakaurua te -6 mō y ki x=\frac{3}{5}y+\frac{28}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-18+28}{5}
Whakareatia \frac{3}{5} ki te -6.
x=2
Tāpiri \frac{28}{5} ki te -\frac{18}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=-6
Kua oti te pūnaha te whakatau.
5x-3y=28,12x+4y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-3\\12&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-3\\12&4\end{matrix}\right))\left(\begin{matrix}5&-3\\12&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\12&4\end{matrix}\right))\left(\begin{matrix}28\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-3\\12&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\12&4\end{matrix}\right))\left(\begin{matrix}28\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\12&4\end{matrix}\right))\left(\begin{matrix}28\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-\left(-3\times 12\right)}&-\frac{-3}{5\times 4-\left(-3\times 12\right)}\\-\frac{12}{5\times 4-\left(-3\times 12\right)}&\frac{5}{5\times 4-\left(-3\times 12\right)}\end{matrix}\right)\left(\begin{matrix}28\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{56}\\-\frac{3}{14}&\frac{5}{56}\end{matrix}\right)\left(\begin{matrix}28\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 28\\-\frac{3}{14}\times 28\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-6
Tangohia ngā huānga poukapa x me y.
5x-3y=28,12x+4y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
12\times 5x+12\left(-3\right)y=12\times 28,5\times 12x+5\times 4y=0
Kia ōrite ai a 5x me 12x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 12 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
60x-36y=336,60x+20y=0
Whakarūnātia.
60x-60x-36y-20y=336
Me tango 60x+20y=0 mai i 60x-36y=336 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-36y-20y=336
Tāpiri 60x ki te -60x. Ka whakakore atu ngā kupu 60x me -60x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-56y=336
Tāpiri -36y ki te -20y.
y=-6
Whakawehea ngā taha e rua ki te -56.
12x+4\left(-6\right)=0
Whakaurua te -6 mō y ki 12x+4y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
12x-24=0
Whakareatia 4 ki te -6.
12x=24
Me tāpiri 24 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 12.
x=2,y=-6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}