\left\{ \begin{array} { l } { 5 x - 2 y = 7 } \\ { 2 x + 7 y = - 5 } \end{array} \right.
Whakaoti mō x, y
x=1
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-2y=7,2x+7y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-2y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=2y+7
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(2y+7\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{2}{5}y+\frac{7}{5}
Whakareatia \frac{1}{5} ki te 2y+7.
2\left(\frac{2}{5}y+\frac{7}{5}\right)+7y=-5
Whakakapia te \frac{2y+7}{5} mō te x ki tērā atu whārite, 2x+7y=-5.
\frac{4}{5}y+\frac{14}{5}+7y=-5
Whakareatia 2 ki te \frac{2y+7}{5}.
\frac{39}{5}y+\frac{14}{5}=-5
Tāpiri \frac{4y}{5} ki te 7y.
\frac{39}{5}y=-\frac{39}{5}
Me tango \frac{14}{5} mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te \frac{39}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{5}\left(-1\right)+\frac{7}{5}
Whakaurua te -1 mō y ki x=\frac{2}{5}y+\frac{7}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2+7}{5}
Whakareatia \frac{2}{5} ki te -1.
x=1
Tāpiri \frac{7}{5} ki te -\frac{2}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-1
Kua oti te pūnaha te whakatau.
5x-2y=7,2x+7y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-2\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}5&-2\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-2\\2&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-2\times 2\right)}&-\frac{-2}{5\times 7-\left(-2\times 2\right)}\\-\frac{2}{5\times 7-\left(-2\times 2\right)}&\frac{5}{5\times 7-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}7\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{39}&\frac{2}{39}\\-\frac{2}{39}&\frac{5}{39}\end{matrix}\right)\left(\begin{matrix}7\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{39}\times 7+\frac{2}{39}\left(-5\right)\\-\frac{2}{39}\times 7+\frac{5}{39}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-1
Tangohia ngā huānga poukapa x me y.
5x-2y=7,2x+7y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 5x+2\left(-2\right)y=2\times 7,5\times 2x+5\times 7y=5\left(-5\right)
Kia ōrite ai a 5x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
10x-4y=14,10x+35y=-25
Whakarūnātia.
10x-10x-4y-35y=14+25
Me tango 10x+35y=-25 mai i 10x-4y=14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-35y=14+25
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-39y=14+25
Tāpiri -4y ki te -35y.
-39y=39
Tāpiri 14 ki te 25.
y=-1
Whakawehea ngā taha e rua ki te -39.
2x+7\left(-1\right)=-5
Whakaurua te -1 mō y ki 2x+7y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-7=-5
Whakareatia 7 ki te -1.
2x=2
Me tāpiri 7 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 2.
x=1,y=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}