\left\{ \begin{array} { l } { 5 x - 2 y = 4 } \\ { \frac { x } { 2 } + \frac { y } { 3 } = 2 } \end{array} \right.
Whakaoti mō x, y
x=2
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-2y=4,\frac{1}{2}x+\frac{1}{3}y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-2y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=2y+4
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(2y+4\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{2}{5}y+\frac{4}{5}
Whakareatia \frac{1}{5} ki te 4+2y.
\frac{1}{2}\left(\frac{2}{5}y+\frac{4}{5}\right)+\frac{1}{3}y=2
Whakakapia te \frac{4+2y}{5} mō te x ki tērā atu whārite, \frac{1}{2}x+\frac{1}{3}y=2.
\frac{1}{5}y+\frac{2}{5}+\frac{1}{3}y=2
Whakareatia \frac{1}{2} ki te \frac{4+2y}{5}.
\frac{8}{15}y+\frac{2}{5}=2
Tāpiri \frac{y}{5} ki te \frac{y}{3}.
\frac{8}{15}y=\frac{8}{5}
Me tango \frac{2}{5} mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{8}{15}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{5}\times 3+\frac{4}{5}
Whakaurua te 3 mō y ki x=\frac{2}{5}y+\frac{4}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{6+4}{5}
Whakareatia \frac{2}{5} ki te 3.
x=2
Tāpiri \frac{4}{5} ki te \frac{6}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=3
Kua oti te pūnaha te whakatau.
5x-2y=4,\frac{1}{2}x+\frac{1}{3}y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}&-\frac{-2}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}\\-\frac{\frac{1}{2}}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}&\frac{5}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{3}{4}\\-\frac{3}{16}&\frac{15}{8}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 4+\frac{3}{4}\times 2\\-\frac{3}{16}\times 4+\frac{15}{8}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=3
Tangohia ngā huānga poukapa x me y.
5x-2y=4,\frac{1}{2}x+\frac{1}{3}y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{2}\times 5x+\frac{1}{2}\left(-2\right)y=\frac{1}{2}\times 4,5\times \frac{1}{2}x+5\times \frac{1}{3}y=5\times 2
Kia ōrite ai a 5x me \frac{x}{2}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{2} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
\frac{5}{2}x-y=2,\frac{5}{2}x+\frac{5}{3}y=10
Whakarūnātia.
\frac{5}{2}x-\frac{5}{2}x-y-\frac{5}{3}y=2-10
Me tango \frac{5}{2}x+\frac{5}{3}y=10 mai i \frac{5}{2}x-y=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y-\frac{5}{3}y=2-10
Tāpiri \frac{5x}{2} ki te -\frac{5x}{2}. Ka whakakore atu ngā kupu \frac{5x}{2} me -\frac{5x}{2}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{8}{3}y=2-10
Tāpiri -y ki te -\frac{5y}{3}.
-\frac{8}{3}y=-8
Tāpiri 2 ki te -10.
y=3
Whakawehea ngā taha e rua o te whārite ki te -\frac{8}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{1}{2}x+\frac{1}{3}\times 3=2
Whakaurua te 3 mō y ki \frac{1}{2}x+\frac{1}{3}y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{1}{2}x+1=2
Whakareatia \frac{1}{3} ki te 3.
\frac{1}{2}x=1
Me tango 1 mai i ngā taha e rua o te whārite.
x=2
Me whakarea ngā taha e rua ki te 2.
x=2,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}