Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x-2y=14,3x+7y=21
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-2y=14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=2y+14
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(2y+14\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{2}{5}y+\frac{14}{5}
Whakareatia \frac{1}{5} ki te 14+2y.
3\left(\frac{2}{5}y+\frac{14}{5}\right)+7y=21
Whakakapia te \frac{14+2y}{5} mō te x ki tērā atu whārite, 3x+7y=21.
\frac{6}{5}y+\frac{42}{5}+7y=21
Whakareatia 3 ki te \frac{14+2y}{5}.
\frac{41}{5}y+\frac{42}{5}=21
Tāpiri \frac{6y}{5} ki te 7y.
\frac{41}{5}y=\frac{63}{5}
Me tango \frac{42}{5} mai i ngā taha e rua o te whārite.
y=\frac{63}{41}
Whakawehea ngā taha e rua o te whārite ki te \frac{41}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{5}\times \frac{63}{41}+\frac{14}{5}
Whakaurua te \frac{63}{41} mō y ki x=\frac{2}{5}y+\frac{14}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{126}{205}+\frac{14}{5}
Whakareatia \frac{2}{5} ki te \frac{63}{41} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{140}{41}
Tāpiri \frac{14}{5} ki te \frac{126}{205} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{140}{41},y=\frac{63}{41}
Kua oti te pūnaha te whakatau.
5x-2y=14,3x+7y=21
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-2\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\21\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-2\\3&7\end{matrix}\right))\left(\begin{matrix}5&-2\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\3&7\end{matrix}\right))\left(\begin{matrix}14\\21\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-2\\3&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\3&7\end{matrix}\right))\left(\begin{matrix}14\\21\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\3&7\end{matrix}\right))\left(\begin{matrix}14\\21\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-2\times 3\right)}&-\frac{-2}{5\times 7-\left(-2\times 3\right)}\\-\frac{3}{5\times 7-\left(-2\times 3\right)}&\frac{5}{5\times 7-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}14\\21\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{41}&\frac{2}{41}\\-\frac{3}{41}&\frac{5}{41}\end{matrix}\right)\left(\begin{matrix}14\\21\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{41}\times 14+\frac{2}{41}\times 21\\-\frac{3}{41}\times 14+\frac{5}{41}\times 21\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{140}{41}\\\frac{63}{41}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{140}{41},y=\frac{63}{41}
Tangohia ngā huānga poukapa x me y.
5x-2y=14,3x+7y=21
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 5x+3\left(-2\right)y=3\times 14,5\times 3x+5\times 7y=5\times 21
Kia ōrite ai a 5x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
15x-6y=42,15x+35y=105
Whakarūnātia.
15x-15x-6y-35y=42-105
Me tango 15x+35y=105 mai i 15x-6y=42 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y-35y=42-105
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-41y=42-105
Tāpiri -6y ki te -35y.
-41y=-63
Tāpiri 42 ki te -105.
y=\frac{63}{41}
Whakawehea ngā taha e rua ki te -41.
3x+7\times \frac{63}{41}=21
Whakaurua te \frac{63}{41} mō y ki 3x+7y=21. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+\frac{441}{41}=21
Whakareatia 7 ki te \frac{63}{41}.
3x=\frac{420}{41}
Me tango \frac{441}{41} mai i ngā taha e rua o te whārite.
x=\frac{140}{41}
Whakawehea ngā taha e rua ki te 3.
x=\frac{140}{41},y=\frac{63}{41}
Kua oti te pūnaha te whakatau.