\left\{ \begin{array} { l } { 5 x + y = 8 } \\ { 3 x - y = 8 } \end{array} \right.
Whakaoti mō x, y
x=2
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+y=8,3x-y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-y+8
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-y+8\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{1}{5}y+\frac{8}{5}
Whakareatia \frac{1}{5} ki te -y+8.
3\left(-\frac{1}{5}y+\frac{8}{5}\right)-y=8
Whakakapia te \frac{-y+8}{5} mō te x ki tērā atu whārite, 3x-y=8.
-\frac{3}{5}y+\frac{24}{5}-y=8
Whakareatia 3 ki te \frac{-y+8}{5}.
-\frac{8}{5}y+\frac{24}{5}=8
Tāpiri -\frac{3y}{5} ki te -y.
-\frac{8}{5}y=\frac{16}{5}
Me tango \frac{24}{5} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te -\frac{8}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{5}\left(-2\right)+\frac{8}{5}
Whakaurua te -2 mō y ki x=-\frac{1}{5}y+\frac{8}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2+8}{5}
Whakareatia -\frac{1}{5} ki te -2.
x=2
Tāpiri \frac{8}{5} ki te \frac{2}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=-2
Kua oti te pūnaha te whakatau.
5x+y=8,3x-y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}5&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}8\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&1\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}8\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}8\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-3}&-\frac{1}{5\left(-1\right)-3}\\-\frac{3}{5\left(-1\right)-3}&\frac{5}{5\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}8\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{3}{8}&-\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}8\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 8+\frac{1}{8}\times 8\\\frac{3}{8}\times 8-\frac{5}{8}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-2
Tangohia ngā huānga poukapa x me y.
5x+y=8,3x-y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 5x+3y=3\times 8,5\times 3x+5\left(-1\right)y=5\times 8
Kia ōrite ai a 5x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
15x+3y=24,15x-5y=40
Whakarūnātia.
15x-15x+3y+5y=24-40
Me tango 15x-5y=40 mai i 15x+3y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+5y=24-40
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8y=24-40
Tāpiri 3y ki te 5y.
8y=-16
Tāpiri 24 ki te -40.
y=-2
Whakawehea ngā taha e rua ki te 8.
3x-\left(-2\right)=8
Whakaurua te -2 mō y ki 3x-y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=6
Me tango 2 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 3.
x=2,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}