Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+y=7,3x-y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-y+7
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-y+7\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{1}{5}y+\frac{7}{5}
Whakareatia \frac{1}{5} ki te -y+7.
3\left(-\frac{1}{5}y+\frac{7}{5}\right)-y=1
Whakakapia te \frac{-y+7}{5} mō te x ki tērā atu whārite, 3x-y=1.
-\frac{3}{5}y+\frac{21}{5}-y=1
Whakareatia 3 ki te \frac{-y+7}{5}.
-\frac{8}{5}y+\frac{21}{5}=1
Tāpiri -\frac{3y}{5} ki te -y.
-\frac{8}{5}y=-\frac{16}{5}
Me tango \frac{21}{5} mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te -\frac{8}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{5}\times 2+\frac{7}{5}
Whakaurua te 2 mō y ki x=-\frac{1}{5}y+\frac{7}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2+7}{5}
Whakareatia -\frac{1}{5} ki te 2.
x=1
Tāpiri \frac{7}{5} ki te -\frac{2}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=2
Kua oti te pūnaha te whakatau.
5x+y=7,3x-y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}5&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&1\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&-1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-3}&-\frac{1}{5\left(-1\right)-3}\\-\frac{3}{5\left(-1\right)-3}&\frac{5}{5\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{3}{8}&-\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 7+\frac{1}{8}\\\frac{3}{8}\times 7-\frac{5}{8}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=2
Tangohia ngā huānga poukapa x me y.
5x+y=7,3x-y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 5x+3y=3\times 7,5\times 3x+5\left(-1\right)y=5
Kia ōrite ai a 5x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
15x+3y=21,15x-5y=5
Whakarūnātia.
15x-15x+3y+5y=21-5
Me tango 15x-5y=5 mai i 15x+3y=21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+5y=21-5
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8y=21-5
Tāpiri 3y ki te 5y.
8y=16
Tāpiri 21 ki te -5.
y=2
Whakawehea ngā taha e rua ki te 8.
3x-2=1
Whakaurua te 2 mō y ki 3x-y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=3
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 3.
x=1,y=2
Kua oti te pūnaha te whakatau.