\left\{ \begin{array} { l } { 5 x + y = 35 } \\ { 7 x + 1,1 y = 40 } \end{array} \right.
Whakaoti mō x, y
x=1
y=30
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+y=35,7x+1.1y=40
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+y=35
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-y+35
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-y+35\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{1}{5}y+7
Whakareatia \frac{1}{5} ki te -y+35.
7\left(-\frac{1}{5}y+7\right)+1.1y=40
Whakakapia te -\frac{y}{5}+7 mō te x ki tērā atu whārite, 7x+1.1y=40.
-\frac{7}{5}y+49+1.1y=40
Whakareatia 7 ki te -\frac{y}{5}+7.
-\frac{3}{10}y+49=40
Tāpiri -\frac{7y}{5} ki te \frac{11y}{10}.
-\frac{3}{10}y=-9
Me tango 49 mai i ngā taha e rua o te whārite.
y=30
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{10}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{5}\times 30+7
Whakaurua te 30 mō y ki x=-\frac{1}{5}y+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-6+7
Whakareatia -\frac{1}{5} ki te 30.
x=1
Tāpiri 7 ki te -6.
x=1,y=30
Kua oti te pūnaha te whakatau.
5x+y=35,7x+1.1y=40
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\40\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right))\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&1\\7&1.1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1.1}{5\times 1.1-7}&-\frac{1}{5\times 1.1-7}\\-\frac{7}{5\times 1.1-7}&\frac{5}{5\times 1.1-7}\end{matrix}\right)\left(\begin{matrix}35\\40\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{15}&\frac{2}{3}\\\frac{14}{3}&-\frac{10}{3}\end{matrix}\right)\left(\begin{matrix}35\\40\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{15}\times 35+\frac{2}{3}\times 40\\\frac{14}{3}\times 35-\frac{10}{3}\times 40\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\30\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=30
Tangohia ngā huānga poukapa x me y.
5x+y=35,7x+1.1y=40
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 5x+7y=7\times 35,5\times 7x+5\times 1.1y=5\times 40
Kia ōrite ai a 5x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
35x+7y=245,35x+5.5y=200
Whakarūnātia.
35x-35x+7y-5.5y=245-200
Me tango 35x+5.5y=200 mai i 35x+7y=245 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7y-5.5y=245-200
Tāpiri 35x ki te -35x. Ka whakakore atu ngā kupu 35x me -35x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
1.5y=245-200
Tāpiri 7y ki te -\frac{11y}{2}.
1.5y=45
Tāpiri 245 ki te -200.
y=30
Whakawehea ngā taha e rua o te whārite ki te 1.5, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
7x+1.1\times 30=40
Whakaurua te 30 mō y ki 7x+1.1y=40. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+33=40
Whakareatia 1.1 ki te 30.
7x=7
Me tango 33 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 7.
x=1,y=30
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}