\left\{ \begin{array} { l } { 5 x + y = 1 } \\ { 3 x + y = - 1 } \end{array} \right.
Whakaoti mō x, y
x=1
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+y=1,3x+y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-y+1
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-y+1\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{1}{5}y+\frac{1}{5}
Whakareatia \frac{1}{5} ki te -y+1.
3\left(-\frac{1}{5}y+\frac{1}{5}\right)+y=-1
Whakakapia te \frac{-y+1}{5} mō te x ki tērā atu whārite, 3x+y=-1.
-\frac{3}{5}y+\frac{3}{5}+y=-1
Whakareatia 3 ki te \frac{-y+1}{5}.
\frac{2}{5}y+\frac{3}{5}=-1
Tāpiri -\frac{3y}{5} ki te y.
\frac{2}{5}y=-\frac{8}{5}
Me tango \frac{3}{5} mai i ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{5}\left(-4\right)+\frac{1}{5}
Whakaurua te -4 mō y ki x=-\frac{1}{5}y+\frac{1}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4+1}{5}
Whakareatia -\frac{1}{5} ki te -4.
x=1
Tāpiri \frac{1}{5} ki te \frac{4}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-4
Kua oti te pūnaha te whakatau.
5x+y=1,3x+y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&1\\3&1\end{matrix}\right))\left(\begin{matrix}5&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-3}&-\frac{1}{5-3}\\-\frac{3}{5-3}&\frac{5}{5-3}\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{3}{2}&\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}-\frac{1}{2}\left(-1\right)\\-\frac{3}{2}+\frac{5}{2}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-4
Tangohia ngā huānga poukapa x me y.
5x+y=1,3x+y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x-3x+y-y=1+1
Me tango 3x+y=-1 mai i 5x+y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5x-3x=1+1
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=1+1
Tāpiri 5x ki te -3x.
2x=2
Tāpiri 1 ki te 1.
x=1
Whakawehea ngā taha e rua ki te 2.
3+y=-1
Whakaurua te 1 mō x ki 3x+y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-4
Me tango 3 mai i ngā taha e rua o te whārite.
x=1,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}