Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+9y=40,3x+7y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+9y=40
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-9y+40
Me tango 9y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-9y+40\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{9}{5}y+8
Whakareatia \frac{1}{5} ki te -9y+40.
3\left(-\frac{9}{5}y+8\right)+7y=3
Whakakapia te -\frac{9y}{5}+8 mō te x ki tērā atu whārite, 3x+7y=3.
-\frac{27}{5}y+24+7y=3
Whakareatia 3 ki te -\frac{9y}{5}+8.
\frac{8}{5}y+24=3
Tāpiri -\frac{27y}{5} ki te 7y.
\frac{8}{5}y=-21
Me tango 24 mai i ngā taha e rua o te whārite.
y=-\frac{105}{8}
Whakawehea ngā taha e rua o te whārite ki te \frac{8}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{9}{5}\left(-\frac{105}{8}\right)+8
Whakaurua te -\frac{105}{8} mō y ki x=-\frac{9}{5}y+8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{189}{8}+8
Whakareatia -\frac{9}{5} ki te -\frac{105}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{253}{8}
Tāpiri 8 ki te \frac{189}{8}.
x=\frac{253}{8},y=-\frac{105}{8}
Kua oti te pūnaha te whakatau.
5x+9y=40,3x+7y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&9\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&9\\3&7\end{matrix}\right))\left(\begin{matrix}5&9\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&9\\3&7\end{matrix}\right))\left(\begin{matrix}40\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&9\\3&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&9\\3&7\end{matrix}\right))\left(\begin{matrix}40\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&9\\3&7\end{matrix}\right))\left(\begin{matrix}40\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-9\times 3}&-\frac{9}{5\times 7-9\times 3}\\-\frac{3}{5\times 7-9\times 3}&\frac{5}{5\times 7-9\times 3}\end{matrix}\right)\left(\begin{matrix}40\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{8}&-\frac{9}{8}\\-\frac{3}{8}&\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}40\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{8}\times 40-\frac{9}{8}\times 3\\-\frac{3}{8}\times 40+\frac{5}{8}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{253}{8}\\-\frac{105}{8}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{253}{8},y=-\frac{105}{8}
Tangohia ngā huānga poukapa x me y.
5x+9y=40,3x+7y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 5x+3\times 9y=3\times 40,5\times 3x+5\times 7y=5\times 3
Kia ōrite ai a 5x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
15x+27y=120,15x+35y=15
Whakarūnātia.
15x-15x+27y-35y=120-15
Me tango 15x+35y=15 mai i 15x+27y=120 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
27y-35y=120-15
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8y=120-15
Tāpiri 27y ki te -35y.
-8y=105
Tāpiri 120 ki te -15.
y=-\frac{105}{8}
Whakawehea ngā taha e rua ki te -8.
3x+7\left(-\frac{105}{8}\right)=3
Whakaurua te -\frac{105}{8} mō y ki 3x+7y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-\frac{735}{8}=3
Whakareatia 7 ki te -\frac{105}{8}.
3x=\frac{759}{8}
Me tāpiri \frac{735}{8} ki ngā taha e rua o te whārite.
x=\frac{253}{8}
Whakawehea ngā taha e rua ki te 3.
x=\frac{253}{8},y=-\frac{105}{8}
Kua oti te pūnaha te whakatau.