\left\{ \begin{array} { l } { 5 x + 7 y = 2060 } \\ { 1020 = 2060 - ( 2 x + 4 y ) } \end{array} \right.
Whakaoti mō x, y
x=160
y=180
Graph
Tohaina
Kua tāruatia ki te papatopenga
1020=2060-2x-4y
Whakaarohia te whārite tuarua. Hei kimi i te tauaro o 2x+4y, kimihia te tauaro o ia taurangi.
2060-2x-4y=1020
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-2x-4y=1020-2060
Tangohia te 2060 mai i ngā taha e rua.
-2x-4y=-1040
Tangohia te 2060 i te 1020, ka -1040.
5x+7y=2060,-2x-4y=-1040
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+7y=2060
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-7y+2060
Me tango 7y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-7y+2060\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{7}{5}y+412
Whakareatia \frac{1}{5} ki te -7y+2060.
-2\left(-\frac{7}{5}y+412\right)-4y=-1040
Whakakapia te -\frac{7y}{5}+412 mō te x ki tērā atu whārite, -2x-4y=-1040.
\frac{14}{5}y-824-4y=-1040
Whakareatia -2 ki te -\frac{7y}{5}+412.
-\frac{6}{5}y-824=-1040
Tāpiri \frac{14y}{5} ki te -4y.
-\frac{6}{5}y=-216
Me tāpiri 824 ki ngā taha e rua o te whārite.
y=180
Whakawehea ngā taha e rua o te whārite ki te -\frac{6}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{7}{5}\times 180+412
Whakaurua te 180 mō y ki x=-\frac{7}{5}y+412. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-252+412
Whakareatia -\frac{7}{5} ki te 180.
x=160
Tāpiri 412 ki te -252.
x=160,y=180
Kua oti te pūnaha te whakatau.
1020=2060-2x-4y
Whakaarohia te whārite tuarua. Hei kimi i te tauaro o 2x+4y, kimihia te tauaro o ia taurangi.
2060-2x-4y=1020
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-2x-4y=1020-2060
Tangohia te 2060 mai i ngā taha e rua.
-2x-4y=-1040
Tangohia te 2060 i te 1020, ka -1040.
5x+7y=2060,-2x-4y=-1040
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2060\\-1040\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right))\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right))\left(\begin{matrix}2060\\-1040\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&7\\-2&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right))\left(\begin{matrix}2060\\-1040\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\-2&-4\end{matrix}\right))\left(\begin{matrix}2060\\-1040\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5\left(-4\right)-7\left(-2\right)}&-\frac{7}{5\left(-4\right)-7\left(-2\right)}\\-\frac{-2}{5\left(-4\right)-7\left(-2\right)}&\frac{5}{5\left(-4\right)-7\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2060\\-1040\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{7}{6}\\-\frac{1}{3}&-\frac{5}{6}\end{matrix}\right)\left(\begin{matrix}2060\\-1040\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 2060+\frac{7}{6}\left(-1040\right)\\-\frac{1}{3}\times 2060-\frac{5}{6}\left(-1040\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}160\\180\end{matrix}\right)
Mahia ngā tātaitanga.
x=160,y=180
Tangohia ngā huānga poukapa x me y.
1020=2060-2x-4y
Whakaarohia te whārite tuarua. Hei kimi i te tauaro o 2x+4y, kimihia te tauaro o ia taurangi.
2060-2x-4y=1020
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-2x-4y=1020-2060
Tangohia te 2060 mai i ngā taha e rua.
-2x-4y=-1040
Tangohia te 2060 i te 1020, ka -1040.
5x+7y=2060,-2x-4y=-1040
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 5x-2\times 7y=-2\times 2060,5\left(-2\right)x+5\left(-4\right)y=5\left(-1040\right)
Kia ōrite ai a 5x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-10x-14y=-4120,-10x-20y=-5200
Whakarūnātia.
-10x+10x-14y+20y=-4120+5200
Me tango -10x-20y=-5200 mai i -10x-14y=-4120 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-14y+20y=-4120+5200
Tāpiri -10x ki te 10x. Ka whakakore atu ngā kupu -10x me 10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6y=-4120+5200
Tāpiri -14y ki te 20y.
6y=1080
Tāpiri -4120 ki te 5200.
y=180
Whakawehea ngā taha e rua ki te 6.
-2x-4\times 180=-1040
Whakaurua te 180 mō y ki -2x-4y=-1040. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x-720=-1040
Whakareatia -4 ki te 180.
-2x=-320
Me tāpiri 720 ki ngā taha e rua o te whārite.
x=160
Whakawehea ngā taha e rua ki te -2.
x=160,y=180
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}