\left\{ \begin{array} { l } { 5 x + 6 y = 32 } \\ { 3 x - 2 y = - 20 } \end{array} \right.
Whakaoti mō x, y
x=-2
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+6y=32,3x-2y=-20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+6y=32
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-6y+32
Me tango 6y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-6y+32\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{6}{5}y+\frac{32}{5}
Whakareatia \frac{1}{5} ki te -6y+32.
3\left(-\frac{6}{5}y+\frac{32}{5}\right)-2y=-20
Whakakapia te \frac{-6y+32}{5} mō te x ki tērā atu whārite, 3x-2y=-20.
-\frac{18}{5}y+\frac{96}{5}-2y=-20
Whakareatia 3 ki te \frac{-6y+32}{5}.
-\frac{28}{5}y+\frac{96}{5}=-20
Tāpiri -\frac{18y}{5} ki te -2y.
-\frac{28}{5}y=-\frac{196}{5}
Me tango \frac{96}{5} mai i ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua o te whārite ki te -\frac{28}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{6}{5}\times 7+\frac{32}{5}
Whakaurua te 7 mō y ki x=-\frac{6}{5}y+\frac{32}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-42+32}{5}
Whakareatia -\frac{6}{5} ki te 7.
x=-2
Tāpiri \frac{32}{5} ki te -\frac{42}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2,y=7
Kua oti te pūnaha te whakatau.
5x+6y=32,3x-2y=-20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&6\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\-20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}5&6\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}32\\-20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&6\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}32\\-20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&-2\end{matrix}\right))\left(\begin{matrix}32\\-20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5\left(-2\right)-6\times 3}&-\frac{6}{5\left(-2\right)-6\times 3}\\-\frac{3}{5\left(-2\right)-6\times 3}&\frac{5}{5\left(-2\right)-6\times 3}\end{matrix}\right)\left(\begin{matrix}32\\-20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{14}\\\frac{3}{28}&-\frac{5}{28}\end{matrix}\right)\left(\begin{matrix}32\\-20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 32+\frac{3}{14}\left(-20\right)\\\frac{3}{28}\times 32-\frac{5}{28}\left(-20\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=7
Tangohia ngā huānga poukapa x me y.
5x+6y=32,3x-2y=-20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 5x+3\times 6y=3\times 32,5\times 3x+5\left(-2\right)y=5\left(-20\right)
Kia ōrite ai a 5x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
15x+18y=96,15x-10y=-100
Whakarūnātia.
15x-15x+18y+10y=96+100
Me tango 15x-10y=-100 mai i 15x+18y=96 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18y+10y=96+100
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
28y=96+100
Tāpiri 18y ki te 10y.
28y=196
Tāpiri 96 ki te 100.
y=7
Whakawehea ngā taha e rua ki te 28.
3x-2\times 7=-20
Whakaurua te 7 mō y ki 3x-2y=-20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-14=-20
Whakareatia -2 ki te 7.
3x=-6
Me tāpiri 14 ki ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te 3.
x=-2,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}