Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+5y=15,4x+10y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+5y=15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-5y+15
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-5y+15\right)
Whakawehea ngā taha e rua ki te 5.
x=-y+3
Whakareatia \frac{1}{5} ki te -5y+15.
4\left(-y+3\right)+10y=-2
Whakakapia te -y+3 mō te x ki tērā atu whārite, 4x+10y=-2.
-4y+12+10y=-2
Whakareatia 4 ki te -y+3.
6y+12=-2
Tāpiri -4y ki te 10y.
6y=-14
Me tango 12 mai i ngā taha e rua o te whārite.
y=-\frac{7}{3}
Whakawehea ngā taha e rua ki te 6.
x=-\left(-\frac{7}{3}\right)+3
Whakaurua te -\frac{7}{3} mō y ki x=-y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{7}{3}+3
Whakareatia -1 ki te -\frac{7}{3}.
x=\frac{16}{3}
Tāpiri 3 ki te \frac{7}{3}.
x=\frac{16}{3},y=-\frac{7}{3}
Kua oti te pūnaha te whakatau.
5x+5y=15,4x+10y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&5\\4&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&5\\4&10\end{matrix}\right))\left(\begin{matrix}5&5\\4&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&5\\4&10\end{matrix}\right))\left(\begin{matrix}15\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&5\\4&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&5\\4&10\end{matrix}\right))\left(\begin{matrix}15\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&5\\4&10\end{matrix}\right))\left(\begin{matrix}15\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{5\times 10-5\times 4}&-\frac{5}{5\times 10-5\times 4}\\-\frac{4}{5\times 10-5\times 4}&\frac{5}{5\times 10-5\times 4}\end{matrix}\right)\left(\begin{matrix}15\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{6}\\-\frac{2}{15}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}15\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 15-\frac{1}{6}\left(-2\right)\\-\frac{2}{15}\times 15+\frac{1}{6}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{3}\\-\frac{7}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{16}{3},y=-\frac{7}{3}
Tangohia ngā huānga poukapa x me y.
5x+5y=15,4x+10y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 5x+4\times 5y=4\times 15,5\times 4x+5\times 10y=5\left(-2\right)
Kia ōrite ai a 5x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
20x+20y=60,20x+50y=-10
Whakarūnātia.
20x-20x+20y-50y=60+10
Me tango 20x+50y=-10 mai i 20x+20y=60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y-50y=60+10
Tāpiri 20x ki te -20x. Ka whakakore atu ngā kupu 20x me -20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-30y=60+10
Tāpiri 20y ki te -50y.
-30y=70
Tāpiri 60 ki te 10.
y=-\frac{7}{3}
Whakawehea ngā taha e rua ki te -30.
4x+10\left(-\frac{7}{3}\right)=-2
Whakaurua te -\frac{7}{3} mō y ki 4x+10y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-\frac{70}{3}=-2
Whakareatia 10 ki te -\frac{7}{3}.
4x=\frac{64}{3}
Me tāpiri \frac{70}{3} ki ngā taha e rua o te whārite.
x=\frac{16}{3}
Whakawehea ngā taha e rua ki te 4.
x=\frac{16}{3},y=-\frac{7}{3}
Kua oti te pūnaha te whakatau.