\left\{ \begin{array} { l } { 5 x + 4 y = - 3 } \\ { 6 x + 3 y = - 2 } \end{array} \right.
Whakaoti mō x, y
x=\frac{1}{9}\approx 0.111111111
y=-\frac{8}{9}\approx -0.888888889
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+4y=-3,6x+3y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+4y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-4y-3
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-4y-3\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{4}{5}y-\frac{3}{5}
Whakareatia \frac{1}{5} ki te -4y-3.
6\left(-\frac{4}{5}y-\frac{3}{5}\right)+3y=-2
Whakakapia te \frac{-4y-3}{5} mō te x ki tērā atu whārite, 6x+3y=-2.
-\frac{24}{5}y-\frac{18}{5}+3y=-2
Whakareatia 6 ki te \frac{-4y-3}{5}.
-\frac{9}{5}y-\frac{18}{5}=-2
Tāpiri -\frac{24y}{5} ki te 3y.
-\frac{9}{5}y=\frac{8}{5}
Me tāpiri \frac{18}{5} ki ngā taha e rua o te whārite.
y=-\frac{8}{9}
Whakawehea ngā taha e rua o te whārite ki te -\frac{9}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{5}\left(-\frac{8}{9}\right)-\frac{3}{5}
Whakaurua te -\frac{8}{9} mō y ki x=-\frac{4}{5}y-\frac{3}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{32}{45}-\frac{3}{5}
Whakareatia -\frac{4}{5} ki te -\frac{8}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{9}
Tāpiri -\frac{3}{5} ki te \frac{32}{45} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{9},y=-\frac{8}{9}
Kua oti te pūnaha te whakatau.
5x+4y=-3,6x+3y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&4\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}5&4\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&4\\6&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-4\times 6}&-\frac{4}{5\times 3-4\times 6}\\-\frac{6}{5\times 3-4\times 6}&\frac{5}{5\times 3-4\times 6}\end{matrix}\right)\left(\begin{matrix}-3\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{4}{9}\\\frac{2}{3}&-\frac{5}{9}\end{matrix}\right)\left(\begin{matrix}-3\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-3\right)+\frac{4}{9}\left(-2\right)\\\frac{2}{3}\left(-3\right)-\frac{5}{9}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\\-\frac{8}{9}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{9},y=-\frac{8}{9}
Tangohia ngā huānga poukapa x me y.
5x+4y=-3,6x+3y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 5x+6\times 4y=6\left(-3\right),5\times 6x+5\times 3y=5\left(-2\right)
Kia ōrite ai a 5x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
30x+24y=-18,30x+15y=-10
Whakarūnātia.
30x-30x+24y-15y=-18+10
Me tango 30x+15y=-10 mai i 30x+24y=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
24y-15y=-18+10
Tāpiri 30x ki te -30x. Ka whakakore atu ngā kupu 30x me -30x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9y=-18+10
Tāpiri 24y ki te -15y.
9y=-8
Tāpiri -18 ki te 10.
y=-\frac{8}{9}
Whakawehea ngā taha e rua ki te 9.
6x+3\left(-\frac{8}{9}\right)=-2
Whakaurua te -\frac{8}{9} mō y ki 6x+3y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-\frac{8}{3}=-2
Whakareatia 3 ki te -\frac{8}{9}.
6x=\frac{2}{3}
Me tāpiri \frac{8}{3} ki ngā taha e rua o te whārite.
x=\frac{1}{9}
Whakawehea ngā taha e rua ki te 6.
x=\frac{1}{9},y=-\frac{8}{9}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}