Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+3y=-2,2x-2y=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+3y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-3y-2
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-3y-2\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{3}{5}y-\frac{2}{5}
Whakareatia \frac{1}{5} ki te -3y-2.
2\left(-\frac{3}{5}y-\frac{2}{5}\right)-2y=-4
Whakakapia te \frac{-3y-2}{5} mō te x ki tērā atu whārite, 2x-2y=-4.
-\frac{6}{5}y-\frac{4}{5}-2y=-4
Whakareatia 2 ki te \frac{-3y-2}{5}.
-\frac{16}{5}y-\frac{4}{5}=-4
Tāpiri -\frac{6y}{5} ki te -2y.
-\frac{16}{5}y=-\frac{16}{5}
Me tāpiri \frac{4}{5} ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{16}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-3-2}{5}
Whakaurua te 1 mō y ki x=-\frac{3}{5}y-\frac{2}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1
Tāpiri -\frac{2}{5} ki te -\frac{3}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=1
Kua oti te pūnaha te whakatau.
5x+3y=-2,2x-2y=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&3\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&3\\2&-2\end{matrix}\right))\left(\begin{matrix}5&3\\2&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\2&-2\end{matrix}\right))\left(\begin{matrix}-2\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&3\\2&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\2&-2\end{matrix}\right))\left(\begin{matrix}-2\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\2&-2\end{matrix}\right))\left(\begin{matrix}-2\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5\left(-2\right)-3\times 2}&-\frac{3}{5\left(-2\right)-3\times 2}\\-\frac{2}{5\left(-2\right)-3\times 2}&\frac{5}{5\left(-2\right)-3\times 2}\end{matrix}\right)\left(\begin{matrix}-2\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{3}{16}\\\frac{1}{8}&-\frac{5}{16}\end{matrix}\right)\left(\begin{matrix}-2\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\left(-2\right)+\frac{3}{16}\left(-4\right)\\\frac{1}{8}\left(-2\right)-\frac{5}{16}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=1
Tangohia ngā huānga poukapa x me y.
5x+3y=-2,2x-2y=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 5x+2\times 3y=2\left(-2\right),5\times 2x+5\left(-2\right)y=5\left(-4\right)
Kia ōrite ai a 5x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
10x+6y=-4,10x-10y=-20
Whakarūnātia.
10x-10x+6y+10y=-4+20
Me tango 10x-10y=-20 mai i 10x+6y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y+10y=-4+20
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
16y=-4+20
Tāpiri 6y ki te 10y.
16y=16
Tāpiri -4 ki te 20.
y=1
Whakawehea ngā taha e rua ki te 16.
2x-2=-4
Whakaurua te 1 mō y ki 2x-2y=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=-2
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 2.
x=-1,y=1
Kua oti te pūnaha te whakatau.