Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-x=-2
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
5x+2y=24,-x+y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+2y=24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-2y+24
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-2y+24\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{2}{5}y+\frac{24}{5}
Whakareatia \frac{1}{5} ki te -2y+24.
-\left(-\frac{2}{5}y+\frac{24}{5}\right)+y=-2
Whakakapia te \frac{-2y+24}{5} mō te x ki tērā atu whārite, -x+y=-2.
\frac{2}{5}y-\frac{24}{5}+y=-2
Whakareatia -1 ki te \frac{-2y+24}{5}.
\frac{7}{5}y-\frac{24}{5}=-2
Tāpiri \frac{2y}{5} ki te y.
\frac{7}{5}y=\frac{14}{5}
Me tāpiri \frac{24}{5} ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{5}\times 2+\frac{24}{5}
Whakaurua te 2 mō y ki x=-\frac{2}{5}y+\frac{24}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-4+24}{5}
Whakareatia -\frac{2}{5} ki te 2.
x=4
Tāpiri \frac{24}{5} ki te -\frac{4}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=2
Kua oti te pūnaha te whakatau.
y-x=-2
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
5x+2y=24,-x+y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&2\\-1&1\end{matrix}\right))\left(\begin{matrix}5&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\-1&1\end{matrix}\right))\left(\begin{matrix}24\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&2\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\-1&1\end{matrix}\right))\left(\begin{matrix}24\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\-1&1\end{matrix}\right))\left(\begin{matrix}24\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-2\left(-1\right)}&-\frac{2}{5-2\left(-1\right)}\\-\frac{-1}{5-2\left(-1\right)}&\frac{5}{5-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}24\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{2}{7}\\\frac{1}{7}&\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}24\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 24-\frac{2}{7}\left(-2\right)\\\frac{1}{7}\times 24+\frac{5}{7}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=2
Tangohia ngā huānga poukapa x me y.
y-x=-2
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
5x+2y=24,-x+y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5x-2y=-24,5\left(-1\right)x+5y=5\left(-2\right)
Kia ōrite ai a 5x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-5x-2y=-24,-5x+5y=-10
Whakarūnātia.
-5x+5x-2y-5y=-24+10
Me tango -5x+5y=-10 mai i -5x-2y=-24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-5y=-24+10
Tāpiri -5x ki te 5x. Ka whakakore atu ngā kupu -5x me 5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=-24+10
Tāpiri -2y ki te -5y.
-7y=-14
Tāpiri -24 ki te 10.
y=2
Whakawehea ngā taha e rua ki te -7.
-x+2=-2
Whakaurua te 2 mō y ki -x+y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x=-4
Me tango 2 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te -1.
x=4,y=2
Kua oti te pūnaha te whakatau.