Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+2y=-6,2x+5y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+2y=-6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-2y-6
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-2y-6\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{2}{5}y-\frac{6}{5}
Whakareatia \frac{1}{5} ki te -2y-6.
2\left(-\frac{2}{5}y-\frac{6}{5}\right)+5y=8
Whakakapia te \frac{-2y-6}{5} mō te x ki tērā atu whārite, 2x+5y=8.
-\frac{4}{5}y-\frac{12}{5}+5y=8
Whakareatia 2 ki te \frac{-2y-6}{5}.
\frac{21}{5}y-\frac{12}{5}=8
Tāpiri -\frac{4y}{5} ki te 5y.
\frac{21}{5}y=\frac{52}{5}
Me tāpiri \frac{12}{5} ki ngā taha e rua o te whārite.
y=\frac{52}{21}
Whakawehea ngā taha e rua o te whārite ki te \frac{21}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{5}\times \frac{52}{21}-\frac{6}{5}
Whakaurua te \frac{52}{21} mō y ki x=-\frac{2}{5}y-\frac{6}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{104}{105}-\frac{6}{5}
Whakareatia -\frac{2}{5} ki te \frac{52}{21} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{46}{21}
Tāpiri -\frac{6}{5} ki te -\frac{104}{105} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{46}{21},y=\frac{52}{21}
Kua oti te pūnaha te whakatau.
5x+2y=-6,2x+5y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&2\\2&5\end{matrix}\right))\left(\begin{matrix}5&2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&2\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-2\times 2}&-\frac{2}{5\times 5-2\times 2}\\-\frac{2}{5\times 5-2\times 2}&\frac{5}{5\times 5-2\times 2}\end{matrix}\right)\left(\begin{matrix}-6\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}&-\frac{2}{21}\\-\frac{2}{21}&\frac{5}{21}\end{matrix}\right)\left(\begin{matrix}-6\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\left(-6\right)-\frac{2}{21}\times 8\\-\frac{2}{21}\left(-6\right)+\frac{5}{21}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{46}{21}\\\frac{52}{21}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{46}{21},y=\frac{52}{21}
Tangohia ngā huānga poukapa x me y.
5x+2y=-6,2x+5y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 5x+2\times 2y=2\left(-6\right),5\times 2x+5\times 5y=5\times 8
Kia ōrite ai a 5x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
10x+4y=-12,10x+25y=40
Whakarūnātia.
10x-10x+4y-25y=-12-40
Me tango 10x+25y=40 mai i 10x+4y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-25y=-12-40
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-21y=-12-40
Tāpiri 4y ki te -25y.
-21y=-52
Tāpiri -12 ki te -40.
y=\frac{52}{21}
Whakawehea ngā taha e rua ki te -21.
2x+5\times \frac{52}{21}=8
Whakaurua te \frac{52}{21} mō y ki 2x+5y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+\frac{260}{21}=8
Whakareatia 5 ki te \frac{52}{21}.
2x=-\frac{92}{21}
Me tango \frac{260}{21} mai i ngā taha e rua o te whārite.
x=-\frac{46}{21}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{46}{21},y=\frac{52}{21}
Kua oti te pūnaha te whakatau.