\left\{ \begin{array} { l } { 5 x + 1 y = 2 } \\ { 2 x - 5 y = 2 } \end{array} \right.
Whakaoti mō x, y
x=\frac{4}{9}\approx 0.444444444
y=-\frac{2}{9}\approx -0.222222222
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+y=2,2x-5y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-y+2
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-y+2\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{1}{5}y+\frac{2}{5}
Whakareatia \frac{1}{5} ki te -y+2.
2\left(-\frac{1}{5}y+\frac{2}{5}\right)-5y=2
Whakakapia te \frac{-y+2}{5} mō te x ki tērā atu whārite, 2x-5y=2.
-\frac{2}{5}y+\frac{4}{5}-5y=2
Whakareatia 2 ki te \frac{-y+2}{5}.
-\frac{27}{5}y+\frac{4}{5}=2
Tāpiri -\frac{2y}{5} ki te -5y.
-\frac{27}{5}y=\frac{6}{5}
Me tango \frac{4}{5} mai i ngā taha e rua o te whārite.
y=-\frac{2}{9}
Whakawehea ngā taha e rua o te whārite ki te -\frac{27}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{5}\left(-\frac{2}{9}\right)+\frac{2}{5}
Whakaurua te -\frac{2}{9} mō y ki x=-\frac{1}{5}y+\frac{2}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2}{45}+\frac{2}{5}
Whakareatia -\frac{1}{5} ki te -\frac{2}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{4}{9}
Tāpiri \frac{2}{5} ki te \frac{2}{45} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{4}{9},y=-\frac{2}{9}
Kua oti te pūnaha te whakatau.
5x+y=2,2x-5y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&1\\2&-5\end{matrix}\right))\left(\begin{matrix}5&1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&-5\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&1\\2&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&-5\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&-5\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{5\left(-5\right)-2}&-\frac{1}{5\left(-5\right)-2}\\-\frac{2}{5\left(-5\right)-2}&\frac{5}{5\left(-5\right)-2}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{27}&\frac{1}{27}\\\frac{2}{27}&-\frac{5}{27}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{27}\times 2+\frac{1}{27}\times 2\\\frac{2}{27}\times 2-\frac{5}{27}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{9}\\-\frac{2}{9}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{4}{9},y=-\frac{2}{9}
Tangohia ngā huānga poukapa x me y.
5x+y=2,2x-5y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 5x+2y=2\times 2,5\times 2x+5\left(-5\right)y=5\times 2
Kia ōrite ai a 5x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
10x+2y=4,10x-25y=10
Whakarūnātia.
10x-10x+2y+25y=4-10
Me tango 10x-25y=10 mai i 10x+2y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+25y=4-10
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
27y=4-10
Tāpiri 2y ki te 25y.
27y=-6
Tāpiri 4 ki te -10.
y=-\frac{2}{9}
Whakawehea ngā taha e rua ki te 27.
2x-5\left(-\frac{2}{9}\right)=2
Whakaurua te -\frac{2}{9} mō y ki 2x-5y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+\frac{10}{9}=2
Whakareatia -5 ki te -\frac{2}{9}.
2x=\frac{8}{9}
Me tango \frac{10}{9} mai i ngā taha e rua o te whārite.
x=\frac{4}{9}
Whakawehea ngā taha e rua ki te 2.
x=\frac{4}{9},y=-\frac{2}{9}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}