\left\{ \begin{array} { l } { 5 = 3 k + b } \\ { - 9 = - 4 k + b } \end{array} \right.
Whakaoti mō k, b
k=2
b=-1
Tohaina
Kua tāruatia ki te papatopenga
3k+b=5
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-4k+b=-9
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3k+b=5,-4k+b=-9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3k+b=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te k mā te wehe i te k i te taha mauī o te tohu ōrite.
3k=-b+5
Me tango b mai i ngā taha e rua o te whārite.
k=\frac{1}{3}\left(-b+5\right)
Whakawehea ngā taha e rua ki te 3.
k=-\frac{1}{3}b+\frac{5}{3}
Whakareatia \frac{1}{3} ki te -b+5.
-4\left(-\frac{1}{3}b+\frac{5}{3}\right)+b=-9
Whakakapia te \frac{-b+5}{3} mō te k ki tērā atu whārite, -4k+b=-9.
\frac{4}{3}b-\frac{20}{3}+b=-9
Whakareatia -4 ki te \frac{-b+5}{3}.
\frac{7}{3}b-\frac{20}{3}=-9
Tāpiri \frac{4b}{3} ki te b.
\frac{7}{3}b=-\frac{7}{3}
Me tāpiri \frac{20}{3} ki ngā taha e rua o te whārite.
b=-1
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
k=-\frac{1}{3}\left(-1\right)+\frac{5}{3}
Whakaurua te -1 mō b ki k=-\frac{1}{3}b+\frac{5}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō k hāngai tonu.
k=\frac{1+5}{3}
Whakareatia -\frac{1}{3} ki te -1.
k=2
Tāpiri \frac{5}{3} ki te \frac{1}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
k=2,b=-1
Kua oti te pūnaha te whakatau.
3k+b=5
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-4k+b=-9
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3k+b=5,-4k+b=-9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}5\\-9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\-4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-4\right)}&-\frac{1}{3-\left(-4\right)}\\-\frac{-4}{3-\left(-4\right)}&\frac{3}{3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{1}{7}\\\frac{4}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 5-\frac{1}{7}\left(-9\right)\\\frac{4}{7}\times 5+\frac{3}{7}\left(-9\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
k=2,b=-1
Tangohia ngā huānga poukapa k me b.
3k+b=5
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-4k+b=-9
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3k+b=5,-4k+b=-9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3k+4k+b-b=5+9
Me tango -4k+b=-9 mai i 3k+b=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3k+4k=5+9
Tāpiri b ki te -b. Ka whakakore atu ngā kupu b me -b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7k=5+9
Tāpiri 3k ki te 4k.
7k=14
Tāpiri 5 ki te 9.
k=2
Whakawehea ngā taha e rua ki te 7.
-4\times 2+b=-9
Whakaurua te 2 mō k ki -4k+b=-9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
-8+b=-9
Whakareatia -4 ki te 2.
b=-1
Me tāpiri 8 ki ngā taha e rua o te whārite.
k=2,b=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}