\left\{ \begin{array} { l } { 48 x + 40 y = 1200 } \\ { 120 x + 80 y = 2800 } \end{array} \right.
Whakaoti mō x, y
x = \frac{50}{3} = 16\frac{2}{3} \approx 16.666666667
y=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
48x+40y=1200,120x+80y=2800
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
48x+40y=1200
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
48x=-40y+1200
Me tango 40y mai i ngā taha e rua o te whārite.
x=\frac{1}{48}\left(-40y+1200\right)
Whakawehea ngā taha e rua ki te 48.
x=-\frac{5}{6}y+25
Whakareatia \frac{1}{48} ki te -40y+1200.
120\left(-\frac{5}{6}y+25\right)+80y=2800
Whakakapia te -\frac{5y}{6}+25 mō te x ki tērā atu whārite, 120x+80y=2800.
-100y+3000+80y=2800
Whakareatia 120 ki te -\frac{5y}{6}+25.
-20y+3000=2800
Tāpiri -100y ki te 80y.
-20y=-200
Me tango 3000 mai i ngā taha e rua o te whārite.
y=10
Whakawehea ngā taha e rua ki te -20.
x=-\frac{5}{6}\times 10+25
Whakaurua te 10 mō y ki x=-\frac{5}{6}y+25. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{25}{3}+25
Whakareatia -\frac{5}{6} ki te 10.
x=\frac{50}{3}
Tāpiri 25 ki te -\frac{25}{3}.
x=\frac{50}{3},y=10
Kua oti te pūnaha te whakatau.
48x+40y=1200,120x+80y=2800
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}48&40\\120&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1200\\2800\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}48&40\\120&80\end{matrix}\right))\left(\begin{matrix}48&40\\120&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}48&40\\120&80\end{matrix}\right))\left(\begin{matrix}1200\\2800\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}48&40\\120&80\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}48&40\\120&80\end{matrix}\right))\left(\begin{matrix}1200\\2800\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}48&40\\120&80\end{matrix}\right))\left(\begin{matrix}1200\\2800\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{80}{48\times 80-40\times 120}&-\frac{40}{48\times 80-40\times 120}\\-\frac{120}{48\times 80-40\times 120}&\frac{48}{48\times 80-40\times 120}\end{matrix}\right)\left(\begin{matrix}1200\\2800\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}&\frac{1}{24}\\\frac{1}{8}&-\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}1200\\2800\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}\times 1200+\frac{1}{24}\times 2800\\\frac{1}{8}\times 1200-\frac{1}{20}\times 2800\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{50}{3}\\10\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{50}{3},y=10
Tangohia ngā huānga poukapa x me y.
48x+40y=1200,120x+80y=2800
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
120\times 48x+120\times 40y=120\times 1200,48\times 120x+48\times 80y=48\times 2800
Kia ōrite ai a 48x me 120x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 120 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 48.
5760x+4800y=144000,5760x+3840y=134400
Whakarūnātia.
5760x-5760x+4800y-3840y=144000-134400
Me tango 5760x+3840y=134400 mai i 5760x+4800y=144000 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4800y-3840y=144000-134400
Tāpiri 5760x ki te -5760x. Ka whakakore atu ngā kupu 5760x me -5760x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
960y=144000-134400
Tāpiri 4800y ki te -3840y.
960y=9600
Tāpiri 144000 ki te -134400.
y=10
Whakawehea ngā taha e rua ki te 960.
120x+80\times 10=2800
Whakaurua te 10 mō y ki 120x+80y=2800. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
120x+800=2800
Whakareatia 80 ki te 10.
120x=2000
Me tango 800 mai i ngā taha e rua o te whārite.
x=\frac{50}{3}
Whakawehea ngā taha e rua ki te 120.
x=\frac{50}{3},y=10
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}