\left\{ \begin{array} { l } { 44 k + b = 72 } \\ { 48 k + b = 64 } \end{array} \right.
Whakaoti mō k, b
k=-2
b=160
Tohaina
Kua tāruatia ki te papatopenga
44k+b=72,48k+b=64
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
44k+b=72
Kōwhiria tētahi o ngā whārite ka whakaotia mō te k mā te wehe i te k i te taha mauī o te tohu ōrite.
44k=-b+72
Me tango b mai i ngā taha e rua o te whārite.
k=\frac{1}{44}\left(-b+72\right)
Whakawehea ngā taha e rua ki te 44.
k=-\frac{1}{44}b+\frac{18}{11}
Whakareatia \frac{1}{44} ki te -b+72.
48\left(-\frac{1}{44}b+\frac{18}{11}\right)+b=64
Whakakapia te -\frac{b}{44}+\frac{18}{11} mō te k ki tērā atu whārite, 48k+b=64.
-\frac{12}{11}b+\frac{864}{11}+b=64
Whakareatia 48 ki te -\frac{b}{44}+\frac{18}{11}.
-\frac{1}{11}b+\frac{864}{11}=64
Tāpiri -\frac{12b}{11} ki te b.
-\frac{1}{11}b=-\frac{160}{11}
Me tango \frac{864}{11} mai i ngā taha e rua o te whārite.
b=160
Me whakarea ngā taha e rua ki te -11.
k=-\frac{1}{44}\times 160+\frac{18}{11}
Whakaurua te 160 mō b ki k=-\frac{1}{44}b+\frac{18}{11}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō k hāngai tonu.
k=\frac{-40+18}{11}
Whakareatia -\frac{1}{44} ki te 160.
k=-2
Tāpiri \frac{18}{11} ki te -\frac{40}{11} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
k=-2,b=160
Kua oti te pūnaha te whakatau.
44k+b=72,48k+b=64
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}44&1\\48&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}72\\64\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}44&1\\48&1\end{matrix}\right))\left(\begin{matrix}44&1\\48&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}44&1\\48&1\end{matrix}\right))\left(\begin{matrix}72\\64\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}44&1\\48&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}44&1\\48&1\end{matrix}\right))\left(\begin{matrix}72\\64\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}44&1\\48&1\end{matrix}\right))\left(\begin{matrix}72\\64\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{44-48}&-\frac{1}{44-48}\\-\frac{48}{44-48}&\frac{44}{44-48}\end{matrix}\right)\left(\begin{matrix}72\\64\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\12&-11\end{matrix}\right)\left(\begin{matrix}72\\64\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 72+\frac{1}{4}\times 64\\12\times 72-11\times 64\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-2\\160\end{matrix}\right)
Mahia ngā tātaitanga.
k=-2,b=160
Tangohia ngā huānga poukapa k me b.
44k+b=72,48k+b=64
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
44k-48k+b-b=72-64
Me tango 48k+b=64 mai i 44k+b=72 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
44k-48k=72-64
Tāpiri b ki te -b. Ka whakakore atu ngā kupu b me -b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4k=72-64
Tāpiri 44k ki te -48k.
-4k=8
Tāpiri 72 ki te -64.
k=-2
Whakawehea ngā taha e rua ki te -4.
48\left(-2\right)+b=64
Whakaurua te -2 mō k ki 48k+b=64. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
-96+b=64
Whakareatia 48 ki te -2.
b=160
Me tāpiri 96 ki ngā taha e rua o te whārite.
k=-2,b=160
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}