\left\{ \begin{array} { l } { 44 = 12 k + b } \\ { 16 = 82 k + b } \end{array} \right.
Whakaoti mō k, b
k=-\frac{2}{5}=-0.4
b = \frac{244}{5} = 48\frac{4}{5} = 48.8
Tohaina
Kua tāruatia ki te papatopenga
12k+b=44
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
82k+b=16
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
12k+b=44,82k+b=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
12k+b=44
Kōwhiria tētahi o ngā whārite ka whakaotia mō te k mā te wehe i te k i te taha mauī o te tohu ōrite.
12k=-b+44
Me tango b mai i ngā taha e rua o te whārite.
k=\frac{1}{12}\left(-b+44\right)
Whakawehea ngā taha e rua ki te 12.
k=-\frac{1}{12}b+\frac{11}{3}
Whakareatia \frac{1}{12} ki te -b+44.
82\left(-\frac{1}{12}b+\frac{11}{3}\right)+b=16
Whakakapia te -\frac{b}{12}+\frac{11}{3} mō te k ki tērā atu whārite, 82k+b=16.
-\frac{41}{6}b+\frac{902}{3}+b=16
Whakareatia 82 ki te -\frac{b}{12}+\frac{11}{3}.
-\frac{35}{6}b+\frac{902}{3}=16
Tāpiri -\frac{41b}{6} ki te b.
-\frac{35}{6}b=-\frac{854}{3}
Me tango \frac{902}{3} mai i ngā taha e rua o te whārite.
b=\frac{244}{5}
Whakawehea ngā taha e rua o te whārite ki te -\frac{35}{6}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
k=-\frac{1}{12}\times \frac{244}{5}+\frac{11}{3}
Whakaurua te \frac{244}{5} mō b ki k=-\frac{1}{12}b+\frac{11}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō k hāngai tonu.
k=-\frac{61}{15}+\frac{11}{3}
Whakareatia -\frac{1}{12} ki te \frac{244}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
k=-\frac{2}{5}
Tāpiri \frac{11}{3} ki te -\frac{61}{15} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
k=-\frac{2}{5},b=\frac{244}{5}
Kua oti te pūnaha te whakatau.
12k+b=44
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
82k+b=16
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
12k+b=44,82k+b=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}12&1\\82&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}44\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}12&1\\82&1\end{matrix}\right))\left(\begin{matrix}12&1\\82&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&1\\82&1\end{matrix}\right))\left(\begin{matrix}44\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}12&1\\82&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&1\\82&1\end{matrix}\right))\left(\begin{matrix}44\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&1\\82&1\end{matrix}\right))\left(\begin{matrix}44\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12-82}&-\frac{1}{12-82}\\-\frac{82}{12-82}&\frac{12}{12-82}\end{matrix}\right)\left(\begin{matrix}44\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{70}&\frac{1}{70}\\\frac{41}{35}&-\frac{6}{35}\end{matrix}\right)\left(\begin{matrix}44\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{70}\times 44+\frac{1}{70}\times 16\\\frac{41}{35}\times 44-\frac{6}{35}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\\\frac{244}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
k=-\frac{2}{5},b=\frac{244}{5}
Tangohia ngā huānga poukapa k me b.
12k+b=44
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
82k+b=16
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
12k+b=44,82k+b=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
12k-82k+b-b=44-16
Me tango 82k+b=16 mai i 12k+b=44 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12k-82k=44-16
Tāpiri b ki te -b. Ka whakakore atu ngā kupu b me -b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-70k=44-16
Tāpiri 12k ki te -82k.
-70k=28
Tāpiri 44 ki te -16.
k=-\frac{2}{5}
Whakawehea ngā taha e rua ki te -70.
82\left(-\frac{2}{5}\right)+b=16
Whakaurua te -\frac{2}{5} mō k ki 82k+b=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
-\frac{164}{5}+b=16
Whakareatia 82 ki te -\frac{2}{5}.
b=\frac{244}{5}
Me tāpiri \frac{164}{5} ki ngā taha e rua o te whārite.
k=-\frac{2}{5},b=\frac{244}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}