\left\{ \begin{array} { l } { 4 x - y = 14 } \\ { 6 x + y = 16 } \end{array} \right.
Whakaoti mō x, y
x=3
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-y=14,6x+y=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-y=14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=y+14
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(y+14\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{4}y+\frac{7}{2}
Whakareatia \frac{1}{4} ki te y+14.
6\left(\frac{1}{4}y+\frac{7}{2}\right)+y=16
Whakakapia te \frac{y}{4}+\frac{7}{2} mō te x ki tērā atu whārite, 6x+y=16.
\frac{3}{2}y+21+y=16
Whakareatia 6 ki te \frac{y}{4}+\frac{7}{2}.
\frac{5}{2}y+21=16
Tāpiri \frac{3y}{2} ki te y.
\frac{5}{2}y=-5
Me tango 21 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{4}\left(-2\right)+\frac{7}{2}
Whakaurua te -2 mō y ki x=\frac{1}{4}y+\frac{7}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-1+7}{2}
Whakareatia \frac{1}{4} ki te -2.
x=3
Tāpiri \frac{7}{2} ki te -\frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=-2
Kua oti te pūnaha te whakatau.
4x-y=14,6x+y=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-1\\6&1\end{matrix}\right))\left(\begin{matrix}4&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\6&1\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-1\\6&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\6&1\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\6&1\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-6\right)}&-\frac{-1}{4-\left(-6\right)}\\-\frac{6}{4-\left(-6\right)}&\frac{4}{4-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{10}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 14+\frac{1}{10}\times 16\\-\frac{3}{5}\times 14+\frac{2}{5}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=-2
Tangohia ngā huānga poukapa x me y.
4x-y=14,6x+y=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 4x+6\left(-1\right)y=6\times 14,4\times 6x+4y=4\times 16
Kia ōrite ai a 4x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
24x-6y=84,24x+4y=64
Whakarūnātia.
24x-24x-6y-4y=84-64
Me tango 24x+4y=64 mai i 24x-6y=84 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y-4y=84-64
Tāpiri 24x ki te -24x. Ka whakakore atu ngā kupu 24x me -24x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-10y=84-64
Tāpiri -6y ki te -4y.
-10y=20
Tāpiri 84 ki te -64.
y=-2
Whakawehea ngā taha e rua ki te -10.
6x-2=16
Whakaurua te -2 mō y ki 6x+y=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x=18
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 6.
x=3,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}