Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x-y=10,3x+2y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=y+10
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(y+10\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{4}y+\frac{5}{2}
Whakareatia \frac{1}{4} ki te y+10.
3\left(\frac{1}{4}y+\frac{5}{2}\right)+2y=8
Whakakapia te \frac{y}{4}+\frac{5}{2} mō te x ki tērā atu whārite, 3x+2y=8.
\frac{3}{4}y+\frac{15}{2}+2y=8
Whakareatia 3 ki te \frac{y}{4}+\frac{5}{2}.
\frac{11}{4}y+\frac{15}{2}=8
Tāpiri \frac{3y}{4} ki te 2y.
\frac{11}{4}y=\frac{1}{2}
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.
y=\frac{2}{11}
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{4}\times \frac{2}{11}+\frac{5}{2}
Whakaurua te \frac{2}{11} mō y ki x=\frac{1}{4}y+\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1}{22}+\frac{5}{2}
Whakareatia \frac{1}{4} ki te \frac{2}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{28}{11}
Tāpiri \frac{5}{2} ki te \frac{1}{22} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{28}{11},y=\frac{2}{11}
Kua oti te pūnaha te whakatau.
4x-y=10,3x+2y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-1\\3&2\end{matrix}\right))\left(\begin{matrix}4&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&2\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-1\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&2\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&2\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-3\right)}&-\frac{-1}{4\times 2-\left(-3\right)}\\-\frac{3}{4\times 2-\left(-3\right)}&\frac{4}{4\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}10\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{1}{11}\\-\frac{3}{11}&\frac{4}{11}\end{matrix}\right)\left(\begin{matrix}10\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 10+\frac{1}{11}\times 8\\-\frac{3}{11}\times 10+\frac{4}{11}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{28}{11}\\\frac{2}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{28}{11},y=\frac{2}{11}
Tangohia ngā huānga poukapa x me y.
4x-y=10,3x+2y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3\left(-1\right)y=3\times 10,4\times 3x+4\times 2y=4\times 8
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x-3y=30,12x+8y=32
Whakarūnātia.
12x-12x-3y-8y=30-32
Me tango 12x+8y=32 mai i 12x-3y=30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-8y=30-32
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11y=30-32
Tāpiri -3y ki te -8y.
-11y=-2
Tāpiri 30 ki te -32.
y=\frac{2}{11}
Whakawehea ngā taha e rua ki te -11.
3x+2\times \frac{2}{11}=8
Whakaurua te \frac{2}{11} mō y ki 3x+2y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+\frac{4}{11}=8
Whakareatia 2 ki te \frac{2}{11}.
3x=\frac{84}{11}
Me tango \frac{4}{11} mai i ngā taha e rua o te whārite.
x=\frac{28}{11}
Whakawehea ngā taha e rua ki te 3.
x=\frac{28}{11},y=\frac{2}{11}
Kua oti te pūnaha te whakatau.