Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x-5y=9,7x-4y=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-5y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=5y+9
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(5y+9\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{5}{4}y+\frac{9}{4}
Whakareatia \frac{1}{4} ki te 5y+9.
7\left(\frac{5}{4}y+\frac{9}{4}\right)-4y=15
Whakakapia te \frac{5y+9}{4} mō te x ki tērā atu whārite, 7x-4y=15.
\frac{35}{4}y+\frac{63}{4}-4y=15
Whakareatia 7 ki te \frac{5y+9}{4}.
\frac{19}{4}y+\frac{63}{4}=15
Tāpiri \frac{35y}{4} ki te -4y.
\frac{19}{4}y=-\frac{3}{4}
Me tango \frac{63}{4} mai i ngā taha e rua o te whārite.
y=-\frac{3}{19}
Whakawehea ngā taha e rua o te whārite ki te \frac{19}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{4}\left(-\frac{3}{19}\right)+\frac{9}{4}
Whakaurua te -\frac{3}{19} mō y ki x=\frac{5}{4}y+\frac{9}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{15}{76}+\frac{9}{4}
Whakareatia \frac{5}{4} ki te -\frac{3}{19} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{39}{19}
Tāpiri \frac{9}{4} ki te -\frac{15}{76} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{39}{19},y=-\frac{3}{19}
Kua oti te pūnaha te whakatau.
4x-5y=9,7x-4y=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right))\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right))\left(\begin{matrix}9\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-5\\7&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right))\left(\begin{matrix}9\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\7&-4\end{matrix}\right))\left(\begin{matrix}9\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-\left(-5\times 7\right)}&-\frac{-5}{4\left(-4\right)-\left(-5\times 7\right)}\\-\frac{7}{4\left(-4\right)-\left(-5\times 7\right)}&\frac{4}{4\left(-4\right)-\left(-5\times 7\right)}\end{matrix}\right)\left(\begin{matrix}9\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{19}&\frac{5}{19}\\-\frac{7}{19}&\frac{4}{19}\end{matrix}\right)\left(\begin{matrix}9\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{19}\times 9+\frac{5}{19}\times 15\\-\frac{7}{19}\times 9+\frac{4}{19}\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{39}{19}\\-\frac{3}{19}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{39}{19},y=-\frac{3}{19}
Tangohia ngā huānga poukapa x me y.
4x-5y=9,7x-4y=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 4x+7\left(-5\right)y=7\times 9,4\times 7x+4\left(-4\right)y=4\times 15
Kia ōrite ai a 4x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
28x-35y=63,28x-16y=60
Whakarūnātia.
28x-28x-35y+16y=63-60
Me tango 28x-16y=60 mai i 28x-35y=63 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-35y+16y=63-60
Tāpiri 28x ki te -28x. Ka whakakore atu ngā kupu 28x me -28x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19y=63-60
Tāpiri -35y ki te 16y.
-19y=3
Tāpiri 63 ki te -60.
y=-\frac{3}{19}
Whakawehea ngā taha e rua ki te -19.
7x-4\left(-\frac{3}{19}\right)=15
Whakaurua te -\frac{3}{19} mō y ki 7x-4y=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+\frac{12}{19}=15
Whakareatia -4 ki te -\frac{3}{19}.
7x=\frac{273}{19}
Me tango \frac{12}{19} mai i ngā taha e rua o te whārite.
x=\frac{39}{19}
Whakawehea ngā taha e rua ki te 7.
x=\frac{39}{19},y=-\frac{3}{19}
Kua oti te pūnaha te whakatau.