\left\{ \begin{array} { l } { 4 x - 3 y = 21 } \\ { x = - y } \end{array} \right.
Whakaoti mō x, y
x=3
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=0
Whakaarohia te whārite tuarua. Me tāpiri te y ki ngā taha e rua.
4x-3y=21,x+y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-3y=21
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=3y+21
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(3y+21\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{3}{4}y+\frac{21}{4}
Whakareatia \frac{1}{4} ki te 21+3y.
\frac{3}{4}y+\frac{21}{4}+y=0
Whakakapia te \frac{21+3y}{4} mō te x ki tērā atu whārite, x+y=0.
\frac{7}{4}y+\frac{21}{4}=0
Tāpiri \frac{3y}{4} ki te y.
\frac{7}{4}y=-\frac{21}{4}
Me tango \frac{21}{4} mai i ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{4}\left(-3\right)+\frac{21}{4}
Whakaurua te -3 mō y ki x=\frac{3}{4}y+\frac{21}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-9+21}{4}
Whakareatia \frac{3}{4} ki te -3.
x=3
Tāpiri \frac{21}{4} ki te -\frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=-3
Kua oti te pūnaha te whakatau.
x+y=0
Whakaarohia te whārite tuarua. Me tāpiri te y ki ngā taha e rua.
4x-3y=21,x+y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}21\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-3\\1&1\end{matrix}\right))\left(\begin{matrix}4&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&1\end{matrix}\right))\left(\begin{matrix}21\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&1\end{matrix}\right))\left(\begin{matrix}21\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\1&1\end{matrix}\right))\left(\begin{matrix}21\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-3\right)}&-\frac{-3}{4-\left(-3\right)}\\-\frac{1}{4-\left(-3\right)}&\frac{4}{4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}21\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{3}{7}\\-\frac{1}{7}&\frac{4}{7}\end{matrix}\right)\left(\begin{matrix}21\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 21\\-\frac{1}{7}\times 21\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=-3
Tangohia ngā huānga poukapa x me y.
x+y=0
Whakaarohia te whārite tuarua. Me tāpiri te y ki ngā taha e rua.
4x-3y=21,x+y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x-3y=21,4x+4y=0
Kia ōrite ai a 4x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
4x-4x-3y-4y=21
Me tango 4x+4y=0 mai i 4x-3y=21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-4y=21
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=21
Tāpiri -3y ki te -4y.
y=-3
Whakawehea ngā taha e rua ki te -7.
x-3=0
Whakaurua te -3 mō y ki x+y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=3,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}