\left\{ \begin{array} { l } { 4 x - 2 y = 8 } \\ { 5 x + 3 y = - 1 } \end{array} \right.
Whakaoti mō x, y
x=1
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-2y=8,5x+3y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-2y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=2y+8
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(2y+8\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{2}y+2
Whakareatia \frac{1}{4} ki te 8+2y.
5\left(\frac{1}{2}y+2\right)+3y=-1
Whakakapia te \frac{y}{2}+2 mō te x ki tērā atu whārite, 5x+3y=-1.
\frac{5}{2}y+10+3y=-1
Whakareatia 5 ki te \frac{y}{2}+2.
\frac{11}{2}y+10=-1
Tāpiri \frac{5y}{2} ki te 3y.
\frac{11}{2}y=-11
Me tango 10 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\left(-2\right)+2
Whakaurua te -2 mō y ki x=\frac{1}{2}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1+2
Whakareatia \frac{1}{2} ki te -2.
x=1
Tāpiri 2 ki te -1.
x=1,y=-2
Kua oti te pūnaha te whakatau.
4x-2y=8,5x+3y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-2\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}4&-2\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-2\\5&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-2\times 5\right)}&-\frac{-2}{4\times 3-\left(-2\times 5\right)}\\-\frac{5}{4\times 3-\left(-2\times 5\right)}&\frac{4}{4\times 3-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&\frac{1}{11}\\-\frac{5}{22}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 8+\frac{1}{11}\left(-1\right)\\-\frac{5}{22}\times 8+\frac{2}{11}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-2
Tangohia ngā huānga poukapa x me y.
4x-2y=8,5x+3y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 4x+5\left(-2\right)y=5\times 8,4\times 5x+4\times 3y=4\left(-1\right)
Kia ōrite ai a 4x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
20x-10y=40,20x+12y=-4
Whakarūnātia.
20x-20x-10y-12y=40+4
Me tango 20x+12y=-4 mai i 20x-10y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-10y-12y=40+4
Tāpiri 20x ki te -20x. Ka whakakore atu ngā kupu 20x me -20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-22y=40+4
Tāpiri -10y ki te -12y.
-22y=44
Tāpiri 40 ki te 4.
y=-2
Whakawehea ngā taha e rua ki te -22.
5x+3\left(-2\right)=-1
Whakaurua te -2 mō y ki 5x+3y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-6=-1
Whakareatia 3 ki te -2.
5x=5
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 5.
x=1,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}