Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x-2y=8,2x+y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-2y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=2y+8
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(2y+8\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{2}y+2
Whakareatia \frac{1}{4} ki te 8+2y.
2\left(\frac{1}{2}y+2\right)+y=2
Whakakapia te \frac{y}{2}+2 mō te x ki tērā atu whārite, 2x+y=2.
y+4+y=2
Whakareatia 2 ki te \frac{y}{2}+2.
2y+4=2
Tāpiri y ki te y.
2y=-2
Me tango 4 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}\left(-1\right)+2
Whakaurua te -1 mō y ki x=\frac{1}{2}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{1}{2}+2
Whakareatia \frac{1}{2} ki te -1.
x=\frac{3}{2}
Tāpiri 2 ki te -\frac{1}{2}.
x=\frac{3}{2},y=-1
Kua oti te pūnaha te whakatau.
4x-2y=8,2x+y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-2\\2&1\end{matrix}\right))\left(\begin{matrix}4&-2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\2&1\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-2\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\2&1\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\2&1\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-2\times 2\right)}&-\frac{-2}{4-\left(-2\times 2\right)}\\-\frac{2}{4-\left(-2\times 2\right)}&\frac{4}{4-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}8\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{4}\\-\frac{1}{4}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}8\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 8+\frac{1}{4}\times 2\\-\frac{1}{4}\times 8+\frac{1}{2}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{3}{2},y=-1
Tangohia ngā huānga poukapa x me y.
4x-2y=8,2x+y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 4x+2\left(-2\right)y=2\times 8,4\times 2x+4y=4\times 2
Kia ōrite ai a 4x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
8x-4y=16,8x+4y=8
Whakarūnātia.
8x-8x-4y-4y=16-8
Me tango 8x+4y=8 mai i 8x-4y=16 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-4y=16-8
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8y=16-8
Tāpiri -4y ki te -4y.
-8y=8
Tāpiri 16 ki te -8.
y=-1
Whakawehea ngā taha e rua ki te -8.
2x-1=2
Whakaurua te -1 mō y ki 2x+y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=3
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=\frac{3}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2},y=-1
Kua oti te pūnaha te whakatau.