Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+y=9,2x+y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-y+9
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-y+9\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{4}y+\frac{9}{4}
Whakareatia \frac{1}{4} ki te -y+9.
2\left(-\frac{1}{4}y+\frac{9}{4}\right)+y=7
Whakakapia te \frac{-y+9}{4} mō te x ki tērā atu whārite, 2x+y=7.
-\frac{1}{2}y+\frac{9}{2}+y=7
Whakareatia 2 ki te \frac{-y+9}{4}.
\frac{1}{2}y+\frac{9}{2}=7
Tāpiri -\frac{y}{2} ki te y.
\frac{1}{2}y=\frac{5}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
y=5
Me whakarea ngā taha e rua ki te 2.
x=-\frac{1}{4}\times 5+\frac{9}{4}
Whakaurua te 5 mō y ki x=-\frac{1}{4}y+\frac{9}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-5+9}{4}
Whakareatia -\frac{1}{4} ki te 5.
x=1
Tāpiri \frac{9}{4} ki te -\frac{5}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=5
Kua oti te pūnaha te whakatau.
4x+y=9,2x+y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&1\\2&1\end{matrix}\right))\left(\begin{matrix}4&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-2}&-\frac{1}{4-2}\\-\frac{2}{4-2}&\frac{4}{4-2}\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-1&2\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 9-\frac{1}{2}\times 7\\-9+2\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=5
Tangohia ngā huānga poukapa x me y.
4x+y=9,2x+y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x-2x+y-y=9-7
Me tango 2x+y=7 mai i 4x+y=9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4x-2x=9-7
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=9-7
Tāpiri 4x ki te -2x.
2x=2
Tāpiri 9 ki te -7.
x=1
Whakawehea ngā taha e rua ki te 2.
2+y=7
Whakaurua te 1 mō x ki 2x+y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=5
Me tango 2 mai i ngā taha e rua o te whārite.
x=1,y=5
Kua oti te pūnaha te whakatau.