Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+y=5,2x-y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-y+5
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-y+5\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{4}y+\frac{5}{4}
Whakareatia \frac{1}{4} ki te -y+5.
2\left(-\frac{1}{4}y+\frac{5}{4}\right)-y=-2
Whakakapia te \frac{-y+5}{4} mō te x ki tērā atu whārite, 2x-y=-2.
-\frac{1}{2}y+\frac{5}{2}-y=-2
Whakareatia 2 ki te \frac{-y+5}{4}.
-\frac{3}{2}y+\frac{5}{2}=-2
Tāpiri -\frac{y}{2} ki te -y.
-\frac{3}{2}y=-\frac{9}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{4}\times 3+\frac{5}{4}
Whakaurua te 3 mō y ki x=-\frac{1}{4}y+\frac{5}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-3+5}{4}
Whakareatia -\frac{1}{4} ki te 3.
x=\frac{1}{2}
Tāpiri \frac{5}{4} ki te -\frac{3}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{2},y=3
Kua oti te pūnaha te whakatau.
4x+y=5,2x-y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&1\\2&-1\end{matrix}\right))\left(\begin{matrix}4&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&1\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-2}&-\frac{1}{4\left(-1\right)-2}\\-\frac{2}{4\left(-1\right)-2}&\frac{4}{4\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}5\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}5\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 5+\frac{1}{6}\left(-2\right)\\\frac{1}{3}\times 5-\frac{2}{3}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{2},y=3
Tangohia ngā huānga poukapa x me y.
4x+y=5,2x-y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 4x+2y=2\times 5,4\times 2x+4\left(-1\right)y=4\left(-2\right)
Kia ōrite ai a 4x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
8x+2y=10,8x-4y=-8
Whakarūnātia.
8x-8x+2y+4y=10+8
Me tango 8x-4y=-8 mai i 8x+2y=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+4y=10+8
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6y=10+8
Tāpiri 2y ki te 4y.
6y=18
Tāpiri 10 ki te 8.
y=3
Whakawehea ngā taha e rua ki te 6.
2x-3=-2
Whakaurua te 3 mō y ki 2x-y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=1
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2},y=3
Kua oti te pūnaha te whakatau.