Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+y=3,3x-3y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-y+3
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-y+3\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{4}y+\frac{3}{4}
Whakareatia \frac{1}{4} ki te -y+3.
3\left(-\frac{1}{4}y+\frac{3}{4}\right)-3y=-1
Whakakapia te \frac{-y+3}{4} mō te x ki tērā atu whārite, 3x-3y=-1.
-\frac{3}{4}y+\frac{9}{4}-3y=-1
Whakareatia 3 ki te \frac{-y+3}{4}.
-\frac{15}{4}y+\frac{9}{4}=-1
Tāpiri -\frac{3y}{4} ki te -3y.
-\frac{15}{4}y=-\frac{13}{4}
Me tango \frac{9}{4} mai i ngā taha e rua o te whārite.
y=\frac{13}{15}
Whakawehea ngā taha e rua o te whārite ki te -\frac{15}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{4}\times \frac{13}{15}+\frac{3}{4}
Whakaurua te \frac{13}{15} mō y ki x=-\frac{1}{4}y+\frac{3}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{13}{60}+\frac{3}{4}
Whakareatia -\frac{1}{4} ki te \frac{13}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{8}{15}
Tāpiri \frac{3}{4} ki te -\frac{13}{60} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{8}{15},y=\frac{13}{15}
Kua oti te pūnaha te whakatau.
4x+y=3,3x-3y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&1\\3&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&1\\3&-3\end{matrix}\right))\left(\begin{matrix}4&1\\3&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&-3\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&1\\3&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&-3\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&-3\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4\left(-3\right)-3}&-\frac{1}{4\left(-3\right)-3}\\-\frac{3}{4\left(-3\right)-3}&\frac{4}{4\left(-3\right)-3}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{15}\\\frac{1}{5}&-\frac{4}{15}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 3+\frac{1}{15}\left(-1\right)\\\frac{1}{5}\times 3-\frac{4}{15}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{15}\\\frac{13}{15}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{8}{15},y=\frac{13}{15}
Tangohia ngā huānga poukapa x me y.
4x+y=3,3x-3y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3y=3\times 3,4\times 3x+4\left(-3\right)y=4\left(-1\right)
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x+3y=9,12x-12y=-4
Whakarūnātia.
12x-12x+3y+12y=9+4
Me tango 12x-12y=-4 mai i 12x+3y=9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+12y=9+4
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
15y=9+4
Tāpiri 3y ki te 12y.
15y=13
Tāpiri 9 ki te 4.
y=\frac{13}{15}
Whakawehea ngā taha e rua ki te 15.
3x-3\times \frac{13}{15}=-1
Whakaurua te \frac{13}{15} mō y ki 3x-3y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-\frac{13}{5}=-1
Whakareatia -3 ki te \frac{13}{15}.
3x=\frac{8}{5}
Me tāpiri \frac{13}{5} ki ngā taha e rua o te whārite.
x=\frac{8}{15}
Whakawehea ngā taha e rua ki te 3.
x=\frac{8}{15},y=\frac{13}{15}
Kua oti te pūnaha te whakatau.