\left\{ \begin{array} { l } { 4 x + 3 y = 71 } \\ { 7 x + 5 y = 120 } \end{array} \right.
Whakaoti mō x, y
x=5
y=17
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+3y=71,7x+5y=120
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+3y=71
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-3y+71
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-3y+71\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{4}y+\frac{71}{4}
Whakareatia \frac{1}{4} ki te -3y+71.
7\left(-\frac{3}{4}y+\frac{71}{4}\right)+5y=120
Whakakapia te \frac{-3y+71}{4} mō te x ki tērā atu whārite, 7x+5y=120.
-\frac{21}{4}y+\frac{497}{4}+5y=120
Whakareatia 7 ki te \frac{-3y+71}{4}.
-\frac{1}{4}y+\frac{497}{4}=120
Tāpiri -\frac{21y}{4} ki te 5y.
-\frac{1}{4}y=-\frac{17}{4}
Me tango \frac{497}{4} mai i ngā taha e rua o te whārite.
y=17
Me whakarea ngā taha e rua ki te -4.
x=-\frac{3}{4}\times 17+\frac{71}{4}
Whakaurua te 17 mō y ki x=-\frac{3}{4}y+\frac{71}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-51+71}{4}
Whakareatia -\frac{3}{4} ki te 17.
x=5
Tāpiri \frac{71}{4} ki te -\frac{51}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5,y=17
Kua oti te pūnaha te whakatau.
4x+3y=71,7x+5y=120
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&3\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}71\\120\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&3\\7&5\end{matrix}\right))\left(\begin{matrix}4&3\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\7&5\end{matrix}\right))\left(\begin{matrix}71\\120\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&3\\7&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\7&5\end{matrix}\right))\left(\begin{matrix}71\\120\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\7&5\end{matrix}\right))\left(\begin{matrix}71\\120\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-3\times 7}&-\frac{3}{4\times 5-3\times 7}\\-\frac{7}{4\times 5-3\times 7}&\frac{4}{4\times 5-3\times 7}\end{matrix}\right)\left(\begin{matrix}71\\120\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5&3\\7&-4\end{matrix}\right)\left(\begin{matrix}71\\120\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\times 71+3\times 120\\7\times 71-4\times 120\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\17\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=17
Tangohia ngā huānga poukapa x me y.
4x+3y=71,7x+5y=120
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 4x+7\times 3y=7\times 71,4\times 7x+4\times 5y=4\times 120
Kia ōrite ai a 4x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
28x+21y=497,28x+20y=480
Whakarūnātia.
28x-28x+21y-20y=497-480
Me tango 28x+20y=480 mai i 28x+21y=497 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
21y-20y=497-480
Tāpiri 28x ki te -28x. Ka whakakore atu ngā kupu 28x me -28x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=497-480
Tāpiri 21y ki te -20y.
y=17
Tāpiri 497 ki te -480.
7x+5\times 17=120
Whakaurua te 17 mō y ki 7x+5y=120. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+85=120
Whakareatia 5 ki te 17.
7x=35
Me tango 85 mai i ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te 7.
x=5,y=17
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}