\left\{ \begin{array} { l } { 4 x + 3 y = - 7 } \\ { 3 x - 5 y = 2 } \end{array} \right.
Whakaoti mō x, y
x=-1
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+3y=-7,3x-5y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+3y=-7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-3y-7
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-3y-7\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{4}y-\frac{7}{4}
Whakareatia \frac{1}{4} ki te -3y-7.
3\left(-\frac{3}{4}y-\frac{7}{4}\right)-5y=2
Whakakapia te \frac{-3y-7}{4} mō te x ki tērā atu whārite, 3x-5y=2.
-\frac{9}{4}y-\frac{21}{4}-5y=2
Whakareatia 3 ki te \frac{-3y-7}{4}.
-\frac{29}{4}y-\frac{21}{4}=2
Tāpiri -\frac{9y}{4} ki te -5y.
-\frac{29}{4}y=\frac{29}{4}
Me tāpiri \frac{21}{4} ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te -\frac{29}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{4}\left(-1\right)-\frac{7}{4}
Whakaurua te -1 mō y ki x=-\frac{3}{4}y-\frac{7}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3-7}{4}
Whakareatia -\frac{3}{4} ki te -1.
x=-1
Tāpiri -\frac{7}{4} ki te \frac{3}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=-1
Kua oti te pūnaha te whakatau.
4x+3y=-7,3x-5y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&3\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&3\\3&-5\end{matrix}\right))\left(\begin{matrix}4&3\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-5\end{matrix}\right))\left(\begin{matrix}-7\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&3\\3&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-5\end{matrix}\right))\left(\begin{matrix}-7\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-5\end{matrix}\right))\left(\begin{matrix}-7\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4\left(-5\right)-3\times 3}&-\frac{3}{4\left(-5\right)-3\times 3}\\-\frac{3}{4\left(-5\right)-3\times 3}&\frac{4}{4\left(-5\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}-7\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{29}&\frac{3}{29}\\\frac{3}{29}&-\frac{4}{29}\end{matrix}\right)\left(\begin{matrix}-7\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{29}\left(-7\right)+\frac{3}{29}\times 2\\\frac{3}{29}\left(-7\right)-\frac{4}{29}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=-1
Tangohia ngā huānga poukapa x me y.
4x+3y=-7,3x-5y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3\times 3y=3\left(-7\right),4\times 3x+4\left(-5\right)y=4\times 2
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x+9y=-21,12x-20y=8
Whakarūnātia.
12x-12x+9y+20y=-21-8
Me tango 12x-20y=8 mai i 12x+9y=-21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y+20y=-21-8
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
29y=-21-8
Tāpiri 9y ki te 20y.
29y=-29
Tāpiri -21 ki te -8.
y=-1
Whakawehea ngā taha e rua ki te 29.
3x-5\left(-1\right)=2
Whakaurua te -1 mō y ki 3x-5y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+5=2
Whakareatia -5 ki te -1.
3x=-3
Me tango 5 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 3.
x=-1,y=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}