Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+3y+14=0,2x+5y+16=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+3y+14=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x+3y=-14
Me tango 14 mai i ngā taha e rua o te whārite.
4x=-3y-14
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-3y-14\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{4}y-\frac{7}{2}
Whakareatia \frac{1}{4} ki te -3y-14.
2\left(-\frac{3}{4}y-\frac{7}{2}\right)+5y+16=0
Whakakapia te -\frac{3y}{4}-\frac{7}{2} mō te x ki tērā atu whārite, 2x+5y+16=0.
-\frac{3}{2}y-7+5y+16=0
Whakareatia 2 ki te -\frac{3y}{4}-\frac{7}{2}.
\frac{7}{2}y-7+16=0
Tāpiri -\frac{3y}{2} ki te 5y.
\frac{7}{2}y+9=0
Tāpiri -7 ki te 16.
\frac{7}{2}y=-9
Me tango 9 mai i ngā taha e rua o te whārite.
y=-\frac{18}{7}
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{4}\left(-\frac{18}{7}\right)-\frac{7}{2}
Whakaurua te -\frac{18}{7} mō y ki x=-\frac{3}{4}y-\frac{7}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{27}{14}-\frac{7}{2}
Whakareatia -\frac{3}{4} ki te -\frac{18}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{11}{7}
Tāpiri -\frac{7}{2} ki te \frac{27}{14} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{11}{7},y=-\frac{18}{7}
Kua oti te pūnaha te whakatau.
4x+3y+14=0,2x+5y+16=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&3\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\-16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&3\\2&5\end{matrix}\right))\left(\begin{matrix}4&3\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&5\end{matrix}\right))\left(\begin{matrix}-14\\-16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&3\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&5\end{matrix}\right))\left(\begin{matrix}-14\\-16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&5\end{matrix}\right))\left(\begin{matrix}-14\\-16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-3\times 2}&-\frac{3}{4\times 5-3\times 2}\\-\frac{2}{4\times 5-3\times 2}&\frac{4}{4\times 5-3\times 2}\end{matrix}\right)\left(\begin{matrix}-14\\-16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&-\frac{3}{14}\\-\frac{1}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}-14\\-16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-14\right)-\frac{3}{14}\left(-16\right)\\-\frac{1}{7}\left(-14\right)+\frac{2}{7}\left(-16\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{7}\\-\frac{18}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{11}{7},y=-\frac{18}{7}
Tangohia ngā huānga poukapa x me y.
4x+3y+14=0,2x+5y+16=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 4x+2\times 3y+2\times 14=0,4\times 2x+4\times 5y+4\times 16=0
Kia ōrite ai a 4x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
8x+6y+28=0,8x+20y+64=0
Whakarūnātia.
8x-8x+6y-20y+28-64=0
Me tango 8x+20y+64=0 mai i 8x+6y+28=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-20y+28-64=0
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-14y+28-64=0
Tāpiri 6y ki te -20y.
-14y-36=0
Tāpiri 28 ki te -64.
-14y=36
Me tāpiri 36 ki ngā taha e rua o te whārite.
y=-\frac{18}{7}
Whakawehea ngā taha e rua ki te -14.
2x+5\left(-\frac{18}{7}\right)+16=0
Whakaurua te -\frac{18}{7} mō y ki 2x+5y+16=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-\frac{90}{7}+16=0
Whakareatia 5 ki te -\frac{18}{7}.
2x+\frac{22}{7}=0
Tāpiri -\frac{90}{7} ki te 16.
2x=-\frac{22}{7}
Me tango \frac{22}{7} mai i ngā taha e rua o te whārite.
x=-\frac{11}{7}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{11}{7},y=-\frac{18}{7}
Kua oti te pūnaha te whakatau.